DualShock 3

From PS3 Developer wiki
Revision as of 07:24, 11 September 2017 by Sandungas (talk | contribs) (→‎Texas Instruments R2A20060 and SN89062: i got it, this line is very important, involves 3 components named Q1, R1, R2 in all the board models, is used to select the battery charge modes)
Jump to navigation Jump to search

Overview

DualShock 3 x-ray

CECH-ZC2J, CECH-ZC2JA, CECH-ZC2JB (CECH-ZC2U, CECH-ZC2E, CECH-ZC2J, CECH-ZC2H, CECH-ZC2M)
CECHZC2 (SCPH-98050, CBEH-1018: prototype)
FCC ID: AK8CECHZC2
ID: 409B-CECHZC2

MIC listings:

Anatel:

Patent:

Model Number Name description Release date Note
CECHZC2J Black Black 2007, November 11 Japan
CECHZC2J SS Satin Silver Satin Silver 2008, March 6 Japan
CECH-ZC2J MB Metallic Blue Metallic Blue 2009, October 29 Japan
CECH-ZC2J DR Deep Red Deep red 2009, October 29 Japan
CECH-ZC2J LW Classic White Classic White 2010, July 29 Japan
CECH-ZC2J CP Candy Pink Candy Pink 2010, November 18 Japan
CECH-ZC2J YB Candy Blue Candy Blue 2011, April 21 Japan
CECH-ZC2J JG Jungle Green Jungle Green 2011, February 24 Japan
CEJH-15017 TALES OF XILLIA®2 X cross Edition 2012, November 1 Japan
CEJH-15020 God of War: Ascension bundle 2013, March 14 Japan
CECH-ZC2J MY Metallic Grey Metallic Grey 2013, June 20 Japan
CECH-ZC2J VT Vita TV edition (White) 2013, November 14 Japan
CECH-ZC2J CY CrystalCrystal 2013, December 19 Japan
Crimson Red Crimson Red
Metallic Gold Metallic Gold
Slate Grey Slate Grey
Urban Camouflage Urban Camouflage
  • Regions (last letter of the "model number"):
    • E Europe
    • H Hong Kong
    • HK Hong Kong
    • J Japan
    • K Korea
    • R Russia
    • T Taiwan
    • U United States
    • M Mexico (seen in Anatel.br)

Controller Components

Printed Circuit Board (PCB) versions

PCB evolution

PlayStation 3 controller PCB evolution
MSU
Versions
Photos Main
Controller
EEPROM Power
Control
Sticks
Control
Motors
Control
Accelerometer Gyroscope BT
Module
Notes
PP1.2 Sixaxis-Dualshock 3 Engineering Sample - Front Board.jpg Sixaxis-Dualshock 3 Engineering Sample - Back Board Copy.jpg Toshiba
?
Renesas
504E
Texas Instruments
BKO
?
(3 pins pots)
2x Unknown
-KF (3 pins)
Hokuriku HDK
HAAM-325B
(offboard)
Murata
ENC-03R
(offboard)
? TYPE: Prototype
MCU: Sensors connected to pins 77, 78, 79, 80, this doesnt matches with other models
EEPROM: Renesas 504E, same one used in a lot of other next models
POWER: Texas Instruments BKO controlls battery/USB charge
STICKS: ALPS with 3 pins pots
MOTORS: The -KF transistor is similar to the one used later in DualShock 3
ACCEL: HDK 325 (added manually)
GYRO: Murata ENC-03R (added manually)
BT: ?
PP4.0 5 MSU PP4.0 5 (Top).jpg MSU PP4.0 5 (Bottom).jpg Toshiba
T6UM2EFG
0103
Texas Instruments
BKO
...and...
2x Ricoh
P0NT
...and...
2x KEC
ALG31
Texas Instruments
YA018
(3 pins pots)
No Hokuriku HDK
HAAM-325BA
ALPS
103A
TYPE: First retail sixaxis
STICKS: Texas Instruments YA018 added to control sticks
MOTORS: removed the -KF transistor and motors
PP4.0 9 MSU PP4.0 9 (Top).jpg MSU PP4.0 9 (Bottom).jpg Toshiba
T6UM3EFG
001
Hokuriku HDK
HAAM-325BA
...or...
Analog Devices
330K
Murata
ENC-03R ?
(offboard)
MCU: Toshiba controller was updated, maybe related with the new accelerometer
TESTPOINTS: same location than PP4.0 5, but some removed
PP4.0 11 MSU PP4.0 11 (Top).jpg MSU PP4.0 11 (Bottom).jpg Hokuriku HDK
HAAM-325BA
...or...
Kionix
KXPC4
TESTPOINTS: same location than PP4.0 9
V2 2.12 MSU V2 2.12 (Top).jpg MSU V2 2.12 (Bottom).jpg Toshiba
T6UN6EFG
001
Texas Instruments
BKO
...and...
NEC
871Y03
2x Toshiba
5W54
(4 pins pots)
Epson-Toyocom
X3500Z ?
(offboard)
ALPS
203A
MCU: Toshiba controller was updated, maybe related with updated power or sticks
POWER: NEC 871Y03 added
STICKS: since this point the ALPS pots has 4 pins
TESTPOINTS: new locations
V2 2.14 MSU V2 2.14 (Top).jpg MSU V2 2.14 (Bottom).jpg 2x Toshiba
763
(4 pins pots)
Epson-Toyocom
X3500Z ?
(onboard)
TESTPOINTS: same location as V2 2.12
V2.5 1.05 MSU V2.5 1.05 (Top).jpg MSU V2.5 1.05 (Bottom).jpg 2x Toshiba
5W54
(4 pins pots)
Kionix
KXPC4
Epson-Toyocom
X3500Z ?
(offboard)
ALPS
303A
TESTPOINTS: same location as V2 2.12, but some removed and some renamed
VX 1.03 MSU VX 1.03 (Top).jpg MSU VX 1.03 (Bottom).jpg Toshiba
T6UN6EFG
002
NEC
871Y03
2x Unknown
-KF ? (3 pins)
Kionix
KXSC4
Epson-Toyocom
X3500Z ?
(onboard)
TYPE: First retail DualShock 3
MCU: Toshiba controller was updated, maybe related with new motor controllers
TESTPOINTS: new locations
V3.5X 1.12 MSU V3.5X 1.12 (Top).jpg MSU V3.5X 1.12 (Bottom).jpg Texas Instruments
B029
2x Unknown
KEX (5 pins)
Kionix
KXSC4
...or...
STMicroelectronics
32S3 ?
ALPS
413A
TESTPOINTS: new locations
V3.5X 1.14 MSU V3.5X 1.14 (Top).jpg MSU V3.5X 1.14 (Bottom).jpg ALPS
113A
TESTPOINTS: same location as V3.5X 1.12
VX3 0.07 MSU VX3 0.07 (Top).jpg MSU VX3 0.07 (Bottom).jpg Toshiba
T6UN6EFG
003
Seiko Instruments
S25C
Texas Instruments
SN84001
(4 pins pots)
Kionix
KXSC4
...or...
STMicroelectronics
unknown
ALPS
413A
MCU: Since this point pins 37, 38, 39, 40 are connected to a resistors network and to the sticks controller
TESTPOINTS: new locations
VX3 0.08 MSU VX3 0.08 (Top).jpg MSU VX3 0.08 (Bottom).jpg Texas Instruments
B029A
Epson-Toyocom
X3500Z ?
(offboard)
TESTPOINTS: same location as VX3 0.07
VX3 0.11 MSU VX3 0.11 (Top).jpg MSU VX3 0.11 (Bottom).jpg Kionix
KXSC4
...or...
STMicroelectronics
32S3
Epson-Toyocom
X3500Z ?
(onboard)
TESTPOINTS: same location as VX3 0.07
VX4 0.09 MSU VX4 0.09 (Top).jpg MSU VX4 0.09 (Bottom).jpg Texas Instruments
R2A20060
STMicroelectronics
Y35A ?
(offboard)
TESTPOINTS: new locations
VX4 0.10 MSU VX4 0.10 (Top).jpg MSU VX4 0.10 (Bottom).jpg Seiko Instruments
S25C
...or...
STMicroelectronics
504RP
Texas Instruments
SN89062
STMicroelectronics
Y35A
(onboard)
TESTPOINTS: same location as VX4 0.09
VX5 0.05 MSU VX5 0.05 (Top).jpg MSU VX5 0.05 (Bottom).jpg Texas Instruments
A6044A0
(power and 4 pins pots)
ALPS
603A
TESTPOINTS: new locations
VX5 0.06 MSU VX5 0.06 (Top).jpg MSU VX5 0.06 (Bottom).jpg STMicroelectronics
Y35A ?
(offboard)
TESTPOINTS: same location as VX5 0.05
VX6 0.06 MSU VX6 0.06 (Top).jpg MSU VX6 0.06 (Bottom).jpg Texas Instruments
SN89062
?
(3 pins pots)
MCU: Since this point pins 37, 38, 39, 40 has been repurposed
TESTPOINTS: same location as VX5 0.05, but a lot of renamed
VX7 0.04 MSU VX7 0.04 (Top).jpg MSU VX7 0.04 (Bottom).jpg STMicroelectronics
504RP
2x Unknown
KE4 (5 pins)
STMicroelectronics
Y35A
(onboard)
TESTPOINTS: new locations
STICKS: Analogue sticks are no longer soldered, instead are now friction fit to the second ribbon cables with a piece of rubber.
PCB: Now uses a rubber piece instead of foam to hold the ribbon cables against the PCB.
VX8 0.14 MSU VX8 0.14 (top).jpg MSU VX8 0.14 (bottom).jpg ? STMicroelectronics
432RK
? CSR
BlueCore
Unknown
TESTPOINTS: new locations
Usually found in CECHZC2_A2 revision controllers
MSU
Versions
Photos Main
Controller
EEPROM Power
Control
Sticks
Control
Motors
Control
Accelerometer Gyroscope BT
Module
Notes

Prototypes

PP1
  • Models
    • MSU PP1.2 MAIN ALPS

Notable differences include

  • Plastic finish being glossy
  • Player LEDs arranged in a square around the USB-mini port and includes a clear plastic shield over the opening for the LEDs
  • PS Home button is clear and retains a red LED underneath it
  • L2 and R2 buttons are present as opposed to Triggers
  • Motors are present
  • Battery inside contains a sticker with the date 2006/3/2 and the model of the batter appears to be longer
  • Lacks the pinhole and switch on the back
  • Label on the front reads Gセンサー搭載 Stick動作せず once roughly translated it reads Powered by the G Sensor, without moving the stick
  • Label on the back reads 0604KATA2
  • Toshiba MCU is on top side of the board (in all the other models is at bottom)
  • The main board was designed without gyroscope and without accelerometer sensors, it has a "children board" sticked on top manufactured by HDK (the first 2 letters of the "HDK" brand are partially visible etched on copper on the children board), this children board includes the accelerometer HDK HAAM 325B [1]. It outputs 3 signals on the 3 white wires "hand made" soldered to the TOSHIBA controller to retrieve the axis data. The other "hand made" soldered component uses 3 wires (black = ground, red = volts, and yellow soldered to TP26) seems to be a Murata ENC-03R Gyroscope Sensor [2]. It seems both components was integrated later in the circuit board of the controllers labeled "sixaxis"

Internally the Gyroscopic sensor for Sixaxis controllers is wired onto the board - presumably as a test for a sensor revision on a spare sample board. The sensor itself appears to be far from complete and very early. Windows (10) detects the controller when connected via USB; analog sticks do not get detected but all other buttons do. The controller does not work on DECHA00A/J units, but might work on DECR units or earlier.

Sixaxis

PP4
V2
  • Models
    • MSU_V2 2.12
    • MSU_V2 2.14
    • MSU_V2.5 1.05

Notable differences

  • Sticks potenciometers with 4 legs, previous versions had 3 legs

DualShock 3

VX
  • Models
    • MSU_VX 1.03

Notable differences

  • Added vibration motors
  • Updated wireless module
VX3.5X
  • Models
    • MSU_V3.5X 1.12
    • MSU_V3.5X 1.14

Notable differences

  • Pressure connector for the buttons membrane
VX3
  • Models
    • MSU_VX3_0.07
    • MSU_VX3_0.08
    • MSU_VX3_0.11
VX4
  • Models
    • MSU_VX4_0.09
    • MSU_VX4_0.10
VX5
  • Models
    • MSU_VX5_0.05
    • MSU_VX5_0.06

Notable differences

  • Updated wireless module
VX6
  • Models
    • VX6_0.06

Notable differences

  • Sticks potenciometers with 3 legs, previous versions had 4 legs
VX7
  • Models
    • MSU_VX7_0.04
VX8

There is not much info about this model, so is not clear if is the official VX8 or a third party clone of VX7The VX8 is official, the board traces, testpoint locations, and the sensor chips has a lot of coincidences with VX7... the weird thing that is shocking is the toshiba chip and the alps bluetooth module has been replaced

Others

Asuka

The ASUKA boards made in china seems to be 3rd party (not sony official). At the time when was released sony was manufacturing the VX5 series... later sony continued with VX6, VX7, etc... ignoring the "ASUKA" labeling

  • Models
    • ASUKA REV: 1.06
    • ASUKA REV: 1.07

PCB TestPoints

PlayStation 3 controller PCB TestPoints
Controller Type Prototype Sixaxis DualShock 3 ASUKA
TestPoints Relocations 0 1 2 3 4 5 6 7 8 NO
Board Model PP1 PP4- PP4+ V2 V2.5 VX V3.5X VX3 VX4 VX5 VX6 VX7 VX8 1.06 1.07
Total amount of testpoints 26 26 26 4
USB +5V TP4 ? TP1 TP1 TP1 TP1 TP1 TP1 TP1 TP1 TP1 TP1 UNL T207
USB Data - TP2 TP2 TP2 TP2 TP2 TP2 TP2 TP2 TP2 TP2 TP2 UNL T206
USB Data + TP3 TP3 TP3 TP3 TP3 TP3 TP3 TP3 TP3 TP3 TP3 UNL T205
USB Ground (or Common Ground) 4x GND TP21, TP22, TP23, TP24 TP4, TP5, TP6, TP7 4x GND 4x UNL T509
Battery USB power good ? TP6 ? N/A
Battery charge start ? TP7 ? N/A
Battery charge setpoint pre ? TP9 N/A
Battery charge setpoint post ? TP64 ? N/A
Battery status 1 ? TP8 ? TP8 TP15 TP31 UNL
Battery status 2 ? TP10 ? TP9 TP9 TP32 UNL
2.8V Switched. Power for vibration motors 3.0V ? N/A TP42 TP8 TP25 UNL T501
Bluetooth Module, unknown TP10 TP11 TP26 T504 ?
2.8V Standby. Power for MCU, EEPROM, BT, Dualshock PS button, and 4x LED TP10 TP10 TP62 TP62 TP62 TP51 TP11 TP11 TP10 TP29 T507 T507
2.8V Switched. Power for Accelerometer and Gyroscope TP12 TP12 TP28 UNL T506 T506
2.8V Switched. Power for 4x Stick Left Stick, X axisLeft Stick, Y axis Right Stick, X axis Right Stick, Y axis pots TP13 TP13 TP13 TP27 UNL T505
3.7V Battery + TP5 ? TP14 TP14 TP14 TP30 UNL T508
COM 1. Common Line for Analog D-Pad LEFT Button D-Pad DOWN Button D-Pad RIGHT Button D-Pad UP Button Dualshock L1 button Dualshock L2 button TP21 ? TP17 TP17 TP25 TP25 TP25 TP17 TP17 TP17 TP17 TP14 UNL T101
COM 2. Common Line for Analog Dualshock square button Dualshock cross button Dualshock circle button Dualshock triangle button Dualshock R1 button Dualshock R2 button TP22 ? TP18 TP18 TP26 TP26 TP26 TP18 TP18 TP18 TP18 TP15 UNL T102
COM 3. Common Line for Digital Dualshock L3 button Dualshock select button Dualshock start button Dualshock R3 button TP60 TP60 N/A
Left Stick, X axis LX (Stick Left X axis 0V~2.8V) TP19 ? TP27 ? TP19 ? TP19 ? TP19 ? TP19 ? TP16 ? UNL T103
Left Stick, Y axis LY (Stick Left Y axis 0V~2.8V) TP20 ? TP28 ? TP20 ? TP20 ? TP20 ? TP20 ? TP17 ? UNL T104
Right Stick, X axis RX (Stick Right X axis 0V~2.8V) TP21 ? TP29 ? TP21 ? TP21 ? TP21 ? TP21 ? TP18 ? UNL T105
Right Stick, Y axis RY (Stick Right Y axis 0V~2.8V) TP22 ? TP30 ? TP22 ? TP22 ? TP22 ? TP22 ? TP19 ? UNL T106
Toshiba T6UN6EFG pin 69, unknown TP23 N/A ? TP23 TP23 TP23 TP20
Toshiba T6UN2EFG pin 68 TP24 TP24 TP31 ? TP31 ? TP31 ? TP23 ? N/A
Unknown (Toshiba T6UN6EFG pin 67 ?) TP25 TP25 TP37 ? TP37 ? TP37 ? TP29 ? N/A
Unknown TP36 TP36 TP44 ? TP44 ? TP44 ? TP36 ? N/A
Dualshock PS button PlayStation (Home Button) TP26 TP26 TP32 TP32 TP32 TP24 N/A
Dualshock start button Start TP27 TP27 TP33 TP33 TP33 TP25 N/A
Dualshock R3 button R3 (Right Stick Press button) TP28 TP28 TP34 TP34 TP34 TP26 N/A
Dualshock L3 button L3 (Left Stick Press button) TP29 TP29 TP35 TP35 TP35 TP27 N/A
Dualshock select button Select TP30 TP30 TP36 TP36 TP36 TP28 N/A
Dualshock square button Square TP37 TP37 TP38 TP38 TP38 TP30 N/A
Dualshock cross button Cross TP31 TP31 TP39 TP39 TP39 TP31 N/A
Dualshock circle button Circle TP38 TP38 TP40 TP40 TP40 TP32 N/A
Dualshock triangle button Triangle TP39 TP39 TP41 TP41 TP41 TP33 N/A
Dualshock R1 button R1 TP32 TP32 TP42 TP42 TP42 TP34 N/A
Dualshock R2 button R2 TP33 TP33 TP43 TP43 TP43 TP35 N/A
Dualshock L1 button L1 TP34 TP34 TP45 TP45 TP45 TP37 N/A
Dualshock L2 button L2 TP41 TP41 TP46 TP46 TP46 TP38 N/A
D-Pad LEFT Button Left (D-pad Left) TP35 TP35 TP47 TP47 TP47 TP39 N/A
D-Pad DOWN Button Down (D-pad Down) TP42 TP42 TP48 TP48 TP48 TP40 N/A
D-Pad RIGHT Button Right (D-pad Right) TP43 TP43 TP49 TP49 TP49 TP41 N/A
D-Pad UP Button Up (D-pad Up) TP44 TP44 TP50 TP50 TP50 TP42 N/A
Bluetooth module (SPI unknown 1) S-CL ? CON TP74 TP47 UNL TP23 UNL ?
Bluetooth module (SPI unknown 2) S-CS ? CON TP75 TP48 UNL TP24 UNL ?
Bluetooth module (SPI unknown 3) S-MI ? CON TP76 TP49 UNL TP25 UNL ?
Bluetooth module (SPI unknown 4) S-MO ? CON TP77 TP50 UNL TP26 UNL ?
Accelerometer Y-Axis (raw signal) TP32 TP32 TP8 UNL T302
Accelerometer X-Axis (raw signal) TP33 TP33 TP9 UNL T303
Accelerometer Z-Axis (raw signal) TP34 TP34 TP10 UNL T301
Accelerometer Y-Axis (filtered signal) TP54 ? TP35 TP35 TP11 UNL T305
Accelerometer X-Axis (filtered signal) TP55 ? TP36 TP36 TP12 UNL T306
Accelerometer Z-Axis (filtered signal) TP56 ? TP37 TP37 TP13 UNL T304
Gyroscope (filtered signal) TP40 TP40 TP33
Gyroscope (raw signal) TP26 ? TP41 TP41 TP34
Enable Small motor TP54 N/A N/A
Enable Big motor TP15 N/A N/A


Ribbon Circuit Boards

Ribbon Circuit Boards Compatibility
PCB Ribbon Compatibility Notes
? SA1Q135A for sixaxis
VX SA1Q146A The first dualshock 3 model
? SA1Q159A Yes
? SA1Q160A
? SA1Q188A
VX4 SA1Q189A shipped with a CECH-2504 datecode 0C. Seems to be identical to SA1Q188A
VX5 SA1Q194A not compatible with previous models, PS button changes
? SA1Q195A
VX7 ? SA1Q222A Yes superslims date ?. Is composed by 2 separated ribbons
? SA1Q224A superslims date ?. Is composed by 2 separated ribbons

SA1Q135A

SA1Q146A

SA1Q159A

SA1Q160A

Counting from left to right... pins 8 and 14 are connected together in the PCB and carries 2.8v stanbdy (in the PCB the copper traces are wider than the others for this reason), This means there is a voltage permanently on this ribbon, also the Dualshock PS button button "wakes up" the controller from standby by sending this voltage back to toshiba chip

SA1Q188A

SA1Q189A

SA1Q194A

SA1Q195A

SA1Q222A

SA1Q224A

Battery

Li-Ion (Accupack)

LIP1359

Shipped with VX4 boards

MODEL LIP1359 Li-ion
BATTERY PACK 3.7V(3,7V)570mAh/2.1Wh
(typ. 610mAh)
Maximun Charge Current: 0.4 A
Maximun Charge Voltage: 4.2 V

LIP1472

Shipped with VX5 boards

MODEL LIP1472 Li-ion
BATTERY PACK 3.7V(3,7V)570mAh/2.1Wh
(typ. 610mAh)
Maximun Charge Current: 0.7 A
Maximun Charge Voltage: 4.25 V

LIP1859

MK11-2902

3.7V 610mAh

MK11-3020

3.7V 570mAh (typ. 610mAh)

Printed Circuit Board Components


MicroController Unit (MCU)

QFP package, 80pin

The pinout of the Toshiba T6UN6EFG-003 was traced in a VX4 board. Has not been verifyed if the pinout matches with T6UN6EFG-001 or T6UN6EFG-002 or other boards. It seems the pins can be remapped at bootloder as can be seen in the photos of the PP1 prototype (note the sensors in that photo are connected to pins 77, 78, 79, 80, this doesnt matches with newer dualshocks 3 models). Some people said in most older versions of the controller it was posible to update the controller firmware by USB with a tool that uploads a rom to the controller, this update procedure should be made by using the BT module because all USB connections are managed by it (so in some way it was the BT module the responsible to update the toshiba controller)

Toshiba T6UM2EFG

Toshiba T6UN2EFG-0103

T6UM2EFG-0103

Toshiba T6UM3EFG

Toshiba T6UN3EFG-001

T6UM3EFG-001 Used in the sisaxis controllers shipped with the first european PS3 models

Toshiba T6UN6EFG

Toshiba T6UN6EFG-001

Toshiba T6UN6EFG-002

Toshiba T6UN6EFG-003
  • Submodels:
    • Toshiba T6UN6EFG-001
    • Toshiba T6UN6EFG-002
    • Toshiba T6UN6EFG-003
Toshiba T6UN6EFG Pinout
Pin # Name Port Description
1 GND To ground
2 V_STBY 2.8V Standby. Power for Toshiba T6UN6EFG, EEPROM, Dualshock PS button, and LED's
3 GND To ground
4 V_BATT 2x Capacitor network to ground, and resistor to battery and Texas Instruments SN89062 pin 16 in VX4 boards
5 V_STBY 2.8V Standby. Power for Toshiba T6UN6EFG, EEPROM, Dualshock PS button, and LED's
6 SENSOR_ACCL_X To acccelerometer X axis through resistor
7 SENSOR_ACCL_Y To acccelerometer Y axis through resistor
8 SENSOR_ACCL_Z To acccelerometer Z axis through resistor
9 SENSOR_GYRO To gyroscope through resistor
10 V_STBY 2.8V Standby. Power for Toshiba T6UN6EFG, EEPROM, Dualshock PS button, and LED's
11 SLAVES_RESET Texas Instruments SN84001 pin 2, and ALPS 413A pin 5 through resistor network in VX4 boards
12 GND To ground
13 BT_POWER_CTRL ? Texas Instruments SN89062, pin 4 in VX4 boards
14 BT_UART_1 ? To BT module (ALPS 413A pin 8 in VX4 boards) through resistor
15 BT_UART_2 ? To BT module (ALPS 413A pin 6 in VX4 boards) through 4x resistor network
16 BT_UART_3 ? To BT module (ALPS 413A pin 9 in VX4 boards) through 4x resistor network
17 BT_UART_4 ? To BT module (ALPS 413A pin 7 in VX4 boards)
18 BT_UNK_1 To BT module (ALPS 413A pin 14 in VX4 boards)
19 BT_UNK_2 To BT module (ALPS 413A pin 28 in VX4 boards)
20 GND To ground
21 V_STBY 2.8V Standby. Power for Toshiba T6UN6EFG, EEPROM, Dualshock PS button, and LED's
22 GND To ground
23 LED_1 To led 1 cathode through 4x resistor network (RN3 in VX4 boards)
24 LED_2 To led 2 cathode through 4x resistor network (RN3 in VX4 boards)
25 LED_3 To led 3 cathode through 4x resistor network (RN3 in VX4 boards)
26 LED_4 To led 4 cathode through 4x resistor network (RN3 in VX4 boards)
27 Not connected ? (for the PS button backlight led in prototypes ?)
28 MOTOR_SMALL Small Motor + (rumble)
29 MOTOR_BIG Big Motor + (rumble)
30 EEPROM_SPI_CLOCK EEPROM, pin 6 in VX4 boards
31 EEPROM_SELECT EEPROM, pin 1 in VX4 boards
32 GND To ground
33 V_STBY 2.8V Standby. Power for Toshiba T6UN6EFG, EEPROM, Dualshock PS button, and LED's
34 EEPROM_SPI_MOSI EEPROM, pin 5 in VX4 boards
35 EEPROM_SPI_MISO EEPROM, pin 2 in VX4 boards
36 STICKS_POWER_CTRL ? Texas Instruments SN89062, pin 17 in VX4 boards
37 LX_V ? 4x Resistor network (RN8 in VX4 boards), and then 2x Capacitor network to ground (CN9 in VX4 boards), and to Texas Instruments SN84001 pin 21 in VX4 boards
38 LY_V ? 4x Resistor network (RN8 in VX4 boards), and then 2x Capacitor network to ground (CN9 in VX4 boards), and to Texas Instruments SN84001 pin 20 in VX4 boards
39 RX_V ? 4x Resistor network (RN8 in VX4 boards), and then 2x Capacitor network to ground (CN10 in VX4 boards), and to Texas Instruments SN84001 pin 19 in VX4 boards
40 RY_V ? 4x Resistor network (RN8 in VX4 boards), and then 2x Capacitor network to ground (CN10 in VX4 boards), and to Texas Instruments SN84001 pin 18 in VX4 boards
41 BATT_CHARGE_SETPOINT Texas Instruments SN89062, pin 21 in VX4 boards
42 BATT_USB_POWER_GOOD ? Texas Instruments SN89062, pin 5 in VX4 boards
43 BATT_CHARGE_START ? Texas Instruments SN89062, pin 2 in VX4 boards
44 BATT_STATUS_1 ? Texas Instruments SN89062, pin 10 in VX4 boards (and TP8 in VX4 boards)
45 BATT_STATUS_2 ? Texas Instruments SN89062, pin 12 in VX4 boards (and TP9 in VX4 boards)
46 COM_3 COM 3 (Common Line for Digital Dualshock L3 button Dualshock select button Dualshock start button Dualshock R3 button))
47 BUTTON_ANALOG_UP D-Pad UP Button
48 BUTTON_ANALOG_RIGHT D-Pad RIGHT Button
49 BUTTON_ANALOG_DOWN D-Pad DOWN Button
50 BUTTON_ANALOG_LEFT D-Pad LEFT Button
51 V_STBY 2.8V Standby. Power for Toshiba T6UN6EFG, EEPROM, Dualshock PS button, and LED's
52 GND To ground
53 BUTTON_ANALOG_L2 Dualshock L2 button
54 BUTTON_ANALOG_L1 Dualshock L1 button
55 Not connected ? (connected to something in PP1 and PP4 boards)
56 BUTTON_ANALOG_R2 Dualshock R2 button
57 BUTTON_ANALOG_R1 Dualshock R1 button
58 BUTTON_ANALOG_TRIANGLE Dualshock triangle button
59 BUTTON_ANALOG_CIRCLE Dualshock circle button
60 BUTTON_ANALOG_CROSS Dualshock cross button
61 BUTTON_ANALOG_SQUARE Dualshock square button
62 Not connected ? (connected to something in PP1 and PP4 boards)
63 Not connected ? (connected to something in PP1 and PP4 boards)
64 BUTTON_DIGITAL_SELECT Dualshock select button
65 BUTTON_DIGITAL_L3 Dualshock L3 button
66 BUTTON_DIGITAL_R3 Dualshock R3 button
67 BUTTON_DIGITAL_START Dualshock start button
68 BUTTON_DIGITAL_PLAYSTATION Dualshock PS button
69 To a testpoint (TP23 in VX4 boards), and 8.45K resistor to pin 74
70 GND To ground. It seems these pins were repurposed at some point
71 GND
72 GND
73 V_STBY 2.8V Standby. Power for Toshiba T6UN6EFG, EEPROM, Dualshock PS button, and LED's
74 2x Capacitor network to ground, and NTC thermistor to standby power rail, and 8.45K resistor to pin 69
75 COM_1 2x Capacitor network to ground, and to ribbon circuit board COM 1 pin (Common Line for Analog D-Pad LEFT Button D-Pad DOWN Button D-Pad RIGHT Button D-Pad UP Button Dualshock L1 button Dualshock L2 button)
76 COM_2 2x Capacitor network to ground, and to ribbon circuit board COM 2 pin (Common Line for Analog Dualshock square button Dualshock cross button Dualshock circle button Dualshock triangle button Dualshock R1 button Dualshock R2 button)
77 LX Left Stick, X axis 2x Capacitor network to ground, and to Texas Instruments SN84001 pin 25 in VX4 boards
78 LY Left Stick, Y axis 2x Capacitor network to ground, and to Texas Instruments SN84001 pin 24 in VX4 boards
79 RX Right Stick, X axis 2x Capacitor network to ground, and to Texas Instruments SN84001 pin 23 in VX4 boards
80 RY Right Stick, Y axis 2x Capacitor network to ground, and to Texas Instruments SN84001 pin 22 in VX4 boards

Memory (EEPROM)

The EEPROM is located the most closer posible to the toshiba controller, usually in the opposite side of the board where the toshiba controller is located, aligned to a border of it

Renesas 504E

Renesas 504E

Renesas HN58X2504TIE

https://www.renesas.com/en-eu/products/memory/eeprom/device/HN58X2504TI.html https://www.renesas.com/en-eu/doc/products/memory/rej03c0061_hn58x250204i.pdf

Pin Name Notes
1
2
3 V_STBY ?
4
5
6
7 V_STBY ?
8 V_STBY ?

Seiko Instruments S25C 040A

Seiko Instruments S25C 040A

http://www.sii-ic.com/en/semicon/datasheets/memory/general-serial-eeprom/s-25c010a-020a-040a/ http://datasheet.sii-ic.com/en/serial_eeprom/S25C010A_020A_040A_E.pdf

File:Seiko Instruments S-25C040A0I-T8T1G pinout.jpg
Seiko Instruments S-25C040A0I-T8T1G pinout

Seiko Instruments S-25C040A0I-T8T1G

EEPROM - 4Kb, CMOS, SPI

STMicroelectronics 504RP

STMicroelectronics 504RP

http://www.st.com/content/st_com/en/products/memories/serial-eeprom/standard-serial-eeprom/standard-spi-eeprom/m95040-r.html ?

Pin Name Notes
1 EEPROM_SELECT To Toshiba T6UN6EFG, pin 31
2 EEPROM_DATA_OUT To Toshiba T6UN6EFG, pin 35
3 V_STBY 2.8V Standby. Power for Dualshock PS button, LED's, EEPROM, etc...
4 GND To ground
5 EEPROM_DATA_IN To Toshiba T6UN6EFG, pin 34
6 EEPROM_CLOCK To Toshiba T6UN6EFG, pin 30
7 V_STBY 2.8V Standby. Power for Dualshock PS button, LED's, EEPROM, etc...
8 V_STBY

STMicroelectronics 432RK

STMicroelectronics 432RK
Pin Name Notes
1 GND ?
2 GND ?
3 GND ?
4 GND ?
5 EEPROM ? To Toshiba T6UN6EFG, pin ?
6 EEPROM ? To Toshiba T6UN6EFG, pin ?
7 EEPROM ? To Toshiba T6UN6EFG, pin ?
8 V_STBY ?

Power

Texas Instruments BKO

Texas Instruments BKO

Texas Instruments BQ24027DRCR

This component is designed to work as a battery charger that is able to select automatically the power source from 2 optional inputs (based in the presence of them, one, both, or none), from either an external AC adapter or from a USB cable. In the datasheet this 2 power sources are connected to pin 1 (AC) and pin 2 (USB). But the playstation 3 controllers doesnt have a connector for an AC adapter aaauch... This is the reason why the V_USB line is connected to pin 1, and pin 2 seems to be unconnected. Is not doing any power input selection because the only power input available to charge the battery is USB. The reason why sony chose this one (even not fitting very well with the requirements of the playtation 3 controller) is because seems to be very accurate in voltage regulations and it has some additional features to control and monitor the charging processes

Pin Name Notes
1 V_USB ? Power source 1 (and TP4 in PP1 prototype)
2 N/C ? Power source 2
3 STAT1 Charge status output 1 (open-drain). To Toshiba main controller ? (and TP8 in PP1 prototype)
4 STAT2 Charge status output 2 (open-drain). To Toshiba main controller ? (and TP10 in PP1 prototype)
5 GND ? To ground
6 ISET1 Charge current set point for AC input and precharge and taper set point for both AC and USB (and TP64 in PP1 prototype)
7 ISET2 Charge current set point for USB port (high=500 mA, low=100mA, hi-z=disable USB charge)
8 PG Powergood status output (active low). To Toshiba main controller ? (and TP6 in PP1 prototype)
9 CE Charge enable input (active low). To Toshiba main controller ? (and TP7 in PP1 prototype ?)
10 V_BATT ? Connected to battery + (and TP5 in PP1 prototype)
  • PG
    • The open-drain PG (power Good) indicates when the AC adapter is present. The output turns ON when a valid voltage is detected. This output is turned off in the sleep mode. The PG pin can be used to drive an LED or to communicate to the host processor.
  • CE
    • The CE digital input is used to disable or enable the charge process. A low-level signal on this pin enables the charge. A high-level signal disables the charge, and places the device in a low-power mode. A high-to-low transition on this pin also resets all timers and timer fault conditions. Note that this applies to both AC and USB charging.
  • ISET1
    • The bqTINY-II offers on-chip current regulation with a programmable set point. The resistor connected between the ISET1 and Vss , Rset , determines the AC charge rate. The V(set) and K(set) parameters are specified in the specifications table
  • ISET2
    • When charging from a USB port, the host controller has the option of selecting either a 100-mA or a 500-mA charge rate using the ISET2 pin. A low-level signal sets the current at 100 mA, and a high-level signal sets the current at 500 mA. A high-Z input disables USB charging
  • STAT1 and STAT2
    • The open-drain STAT1 and STAT2 outputs indicate various charger operations as shown in the following table. These status pins can be used to drive LEDs or communicate to the host processor. Note that OFF indicates the open-drain transistor is turned off
Status pins
Charge State STAT1 STAT2
Precharge in progress ON ON
Fast charge in progress ON OFF
Charge done OFF ON
Charge suspend (temperature) OFF OFF
Timer fault OFF OFF
Sleep mode OFF OFF

Texas Instruments YA018

Texas Instruments YA018

Texas Instruments TS3A5018PW

This component was added at the time of the first retail board, is dedicated to controll the power rails

NEC 871Y03

NEC 871Y03

Works as a replacement of the Texas Instruments BKO and YA018 together, controlls Battery/USB chargue, and power rails

Texas Instruments B029 and B029A

Texas Instruments B029
Texas Instruments B029A

20 pins

Pin 3 is connected to "reset switch" (SW1), when reset switch is pressed this pin is connected to ground

Texas Instruments R2A20060 and SN89062

Texas Instruments R2A20060
Texas Instruments SN89062

24 pins. Used in boards: VX3, VX4, VX6, VX7 (R2A20060 is used in VX4 0.09 boards only and seems to be an early version/prototype of SN89062, both has the same pinout)

Pin Name Notes
1 GND To ground
2 battery charge enable ? To Toshiba T6UN6EFG, pin 43
3 RESET_SWITCH To SW1, when reset switch is pressed this pin is grounded
4 BT related ? To Toshiba T6UN6EFG, pin 13. And 47K resistor to pin 22
5 battery powergood ? To Toshiba T6UN6EFG, pin 42
6 V_USB USB +5V. (and connected to TP1 in VX4 boards)
7 V_BT ? To BT module. (ALPS 413A pin 3, and TP10 in VX4 boards). This pin doesnt seems to have voltage either with the controller in standby or working though
8 V_MOTORS Connected to 2x "KEX" small components (voltage regulators ?, 5 pins), "BM+1" (Big Motor +) and "SM+1" (Small Motor +). (and TP42 in VX4 boards)
9 N/C ? Not connected ? (dissapears under the component and doesnt seems to continue)
10 BATT_CHARGE_STATUS_1 ? To Toshiba T6UN6EFG, pin 44 (and TP8 in VX4 boards)
11 N/C ? Not connected ? (dissapears under the component and doesnt seems to continue)
12 BATT_CHARGE_STATUS_2 ? To Toshiba T6UN6EFG, pin 45 (and TP9 in VX4 boards)
13 To BT module pin 37. And to 47K resistor to ground
14 To BT module pin 16. And to 47K resistor to pin 22
15 To BT module pin 38. And capacitor to ground
16 V_BATT 4.12V from Battery + pin, and capacitor to ground, and 147K resistor to Toshiba T6UN6EFG pin 4 (and connected to TP14 in VX4 boards)
17 sticks related ? To Toshiba T6UN6EFG, pin 36
18 V_CAP_1 0.970uf Capacitor to ground (meassured onboard so maybe not accurate)
19 To BT module pin 15. And to 47K resistor to ground
20 V_CAP_2 1.950uf Capacitor to ground (meassured onboard so maybe not accurate)
21 BATT_CHARGE_MODE Blue resistor to ground (labeled R2), and to blue 2.67K resistor (labeled R1) then to DP transistor (labeled Q1) (and the transistor base is connected to Toshiba T6UN6EFG, pin 41)
22 V_STBY 2.8V standby shared rail for Toshiba, BT, PS button, LED's, EEPROM, etc... (and connected to TP11 in VX4 boards)
23 V_SENSORS 2.8V for accelerometer and gyroscope (Switched, no voltage in standby). (and connected to TP12 in VX4 boards)
24 V_STICKS 2.8V for 4x stick pots (Switched, no voltage in standby). (and connected to TP13 in VX4 boards)
  • Notes
    • This component seems to provide with several voltages to the BT module that i could not identify... probably are for the different components inside the BT module
    • The connections with the toshiba controller probably are to provide voltages for the subcircuits inside it. There must be at least one exception because the toshiba is the "boss" of the board so it needs to be able to send some controll signal to this component to enable/disable power rails and things like that
    • The toshiba controller probably is connected to the battery + or/and the 5V USB (so it should work even if this component is disabled because this one is a slave), is just i have not tryed to find all the pins of the toshiba chip, wrong, the toshiba chip is not connected to battery/USB, it seems to be connected only to "low voltage" lines

Sticks

Toshiba 5W54

Toshiba 5W54 pinout
Toshiba 5W54 in a VX3.5X board

8 pins. Used in V2, V2.5, VX, and V3.5X boards Toshiba TC75W54FU (bulky package) or TC75W54FK (slim package). Dual op-amp, 1, 2

Pin Name Notes
1 STICK_Y ? To toshiba T6UN6EFG pin ? (and a testpoint)
2 STICK_Y_POT_? Connected to stick Y axis pot pin ? (is either pin 1 or 2 from the ALPS stick models with 4 pins)
3 STICK_Y_POT_? Connected to stick Y axis pot pin ? (is either pin 1 or 2 from the ALPS stick models with 4 pins)
4 GND ?
5 STICK_X_POT_? Connected to stick X axis pot pin ? (is either pin 1 or 2 from the ALPS stick models with 4 pins)
6 STICK_X_POT_? Connected to stick X axis pot pin ? (is either pin 1 or 2 from the ALPS stick models with 4 pins)
7 STICK_X ? To toshiba T6UN6EFG pin ? (and a testpoint)
8 V_STICKS ?
  • There are 2 components like this one in the boards where are used, every one of them is for an stick, and every one of them is connected to the toshiba main controller to send the values of the X and Y axis of that stick
  • There are 2 testpoints in the lines connecting this component with the toshiba main controller (one for every axis * 2 sticks... does a total of 4 testpoints in between this components and the toshiba controller)
  • The photo at the right belongs to the right stick of an VX3.5 board (with testpoints TP21 and TP22)

Unknown 763

File:Unknown sticks 002 763.jpg
Unknown sticks 763 (example 1)
File:Unknown sticks 003 763.jpg
Unknown sticks 763 (example 2)

8 pins. Used in V2 2.14 boards

This component is very interesting, is the reason why the sticks potentiometers has 4 pins since this model (previous models has sticks with 3 pins pots)

The quality of the sticks and the way they works has been discussed in other places with some controversy, in ALPS webpage are only available sticks with 3 pins pots, but for sony they made an special production of sticks with 4 pins pots, this ones are a bit special

In the boards where this component is present (or his replacement upgraded versions) every stick has two potentiometers (to meassure rotations of X and Y axis), and every potentiometer has 4 pins. Two of the potentiometer pins are connected to this component and drives a voltage, but there is also another pin of the potentiometer that has a controll voltage. Inside the potentiometer there are two separated voltages, this seems to create a magnetic field with the hall effect, also this allows to separate the mobile parts inside the potentiometer (because every one of them has a different voltage circuit) by an intermediary "seal" that prevents dust and degradation of the parts (there is no direct contact of metal-VS-metal)

So... this component is the initial version that gives support for this "special sticks with 4 pins pots", in this version there is one component for every stick (so the board has a total of 2). The connections are (for every one of them): 4 lines to the stick + 2 lines to toshiba controller (the raw X and Y signals). Also in between this lines there are some testpoints (to check normal working of this subcircuit output)

Texas Instruments SN84001

Texas Instruments SN84001

Texas Instruments SN84001 subcircuits

28 pins. Used in VX3, and VX4 boards

This component is dedicated to controll the sticks, the internal circuits inside it has some kind of simmetry, the V_STICKS voltage is only used to enable it. VX3 and VX4 boards has 7 capacitor networks in total and this component uses 4 of them. The 3 resistors used in the subcircuit are colored in blue which seems to indicate that are high precision. There are no datasheets availables of this component in the manufacturer web but most probably there is going to be some similar, at this point is needed to find some datasheet that matches a bit the pinout and the subcircuit explained here in wiki

Pin Name Notes
1 GND To ground
2 SLAVES_RESET Connected to Toshiba T6UN6EFG pin 11, and resistor network to BT module (ALPS 413A pin 5 in VX3 and VX4 boards)
3 V_STICKS 2.8V Switched. Power for 4x Stick Left Stick, X axisLeft Stick, Y axis Right Stick, X axis Right Stick, Y axis pots pin 3. (and TP13 in VX3 and VX4 boards). This pin seems to be working simply as an ON/OFF signal
4 LY_2 Stick Left Y axis pot pin 2
5 LX_1 Stick Left X axis pot pin 1
6 RY_2 Stick Right Y axis pot pin 2
7 RX_1 Stick Right X axis pot pin 1
8 LY_1 Stick Left Y axis pot pin 1
9 LX_2 Stick Left X axis pot pin 2
10 RY_1 Stick Right Y axis pot pin 1
11 RX_2 Stick Right X axis pot pin 2
12 All this pins are connected with each others making two independant subcircuits
Pin 12 is connected with 15 and 16 by using several resistors and a NTC thermistor. This subcircuit seems to be an Inrush current limiter
Pin 17 is connected with 13 and 14 by using several resistors
13
14
15
16
17
18 RY_V ? Capacitor network to ground, and resistor network to Toshiba T6UN6EFG pin 40
19 RX_V ? Capacitor network to ground, and resistor network to Toshiba T6UN6EFG pin 39
20 LY_V ? Capacitor network to ground, and resistor network to Toshiba T6UN6EFG pin 38
21 LX_V ? Capacitor network to ground, and resistor network to Toshiba T6UN6EFG pin 37
22 RY ? Capacitor network to ground, and to Toshiba T6UN6EFG pin 80. (and TP22 in VX3 and VX4 boards)
23 RX ? Capacitor network to ground, and to Toshiba T6UN6EFG pin 79. (and TP21 in VX3 and VX4 boards)
24 LY ? Capacitor network to ground, and to Toshiba T6UN6EFG pin 78. (and TP20 in VX3 and VX4 boards)
25 LX ? Capacitor network to ground, and to Toshiba T6UN6EFG pin 77. (and TP19 in VX3 and VX4 boards)
26 GND To ground
27 GND
28 GND

Texas Instruments A6044A0

Texas Instruments A6044A0

48 pins. Used in VX5 boards

This is an all-in-one component, it does the power and sticks controll

Levers

3 Pins (old)

In older models

4 Pins

Two rotational potentiometers (variable resistors) are positioned below eack stick to meassure X and Y displacement. Current flows constantly through each one, and the amount of current is determined by the amount of resistance. Resistance is increased or decreased based on the position of the stick in a range from 0V up to 2.8V with center point at 1.4V

3 Pins (new)

In newer models


Motors

In all the boards (except sixaxis models) there are 2 small components to controll the vibration motors (small and big motors, usually labeled as SM and BM). All them seems to be manufactured by http://www.keccorp.com/

  • 3 pins (transistors ?)
    • In PP1.2 prototype boards the components are marked as -KF (Q7 and Q8 in this photo, close to the pads where the motors wires are soldered). KEC BC84 based ?
    • In VX boards (first dualshock 3 model with motors) components are Q4 and Q5 in this photo... the marks are not readable
  • 5 pins (voltage regulators ?)
    • In V3.5X, VX3, VX4, VX5, VX6 ... first time the components are marked as KEX
    • In VX7 and VX8 are marked as KE4 (one is Q3... the other is not labeled)
Dualshock 3 motors controll schematic (5 pins version)

Sensors

About sensors and testpoints... In a PS3 controller board (sisaxis or dualshock 3) there are 4 data lines that are the outputs of the sensors (accelerometer X, accelerometer Y, accelerometer Z, and gyroscope), that goes from the sensor itself to a resistor and then to the toshiba T6UN6EFG controller. Every one of that lines has 2 testpoint, one before and one after the resistor, the purpose of this testpoints is to meassure the raw data from the sensors and also to check the health of that resistor (seems to be critical, either because is degraded with the use, or because could be fryed suddenly), the schematic for every one of this lines is as simple as this:

sensor output -> testpoint -> resistor -> testpoint -> toshiba T6UN6EFG controller

The resistor seems to have a value of 33K (verifyed in VX4 board only) and works as a filter

When the controller is turned off is posible to meassure the value of the resistor by meassuring resistance in between the two testpoints. When the controller is working is posible to check the sensor "raw" signal by touching in the first testpoint, and the "filtered" signal by touching the second testpoint (this is what the toshiba T6UN6EFG really gets)

About sensors location in the board... The giroscope is always located at the center of the board in between the sticks and aligned with the USB connector, this is because it meassures rotations around an imaginary axis located in that position (vertically in your room from floor to roof and passing exactly in between your controller sticks). The accelerometer is always located in the left-top corner of the board, this seems to be because this area is more sensitive for right handed people (if you are right handed and shake it with only right hand... the left side of the board is going to suffer more g-force)

Accelerometers

Hokuriku HDK 325A and 325B
Hokuriku HDK 325A
Hokuriku HDK 325B

https://www.hdk.co.jp/japanese/topics_j/tpc053_j.htm

Hokuriku HDK HAAM 325A and 325B

Accelerometer - 3-Axis

  • Note in the photo of 325A the pins numbers are marked, and are in clockwise direction (inversed), the table below follows this clockwise order
Pin Name Notes
1 GND ?
2 V_SENSORS ?
3 N/C ?
4 N/C ?
5 N/C ?
6
7
8 ACCL_AXIS ? To Toshiba T6UN*EFG, pin ?
9 ACCL_AXIS ? To Toshiba T6UN*EFG, pin ?
10 ACCL_AXIS ? To Toshiba T6UN*EFG, pin ?
Analog Devices 330K
Analog Devices 330K
File:Analog Devices 330K pinout.jpg
Analog Devices 330K pinout

Analog Devices ADXL330KCPZ, 3-Axis Accelerometer, ±3g, 1.8 → 3.6 V, LFCSP 16-Pin

Only used in MSU_PP4.0 9 model

Pin Name Notes
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
Kionix KXPC4 and KXSC4
Kionix KXPC4
Kionix KXSC4

Kionix KXSC4 application schematic

DFN
Accelerometer - 3-Axis
The pinout is the same than the Kionix KXSC4 used in Move Motion Controller

Kionix KXSC4 is used in Dualshock 3 MSU_V3.5X boards and Move Motion Controller. Same pinout than the kionix KXPC4

The boards where is used this components has solder points ready to replace it by a 32S3 Accelerometer. Are different components (probably from different manufactures) but the copper traces in the dualshock boards are connected "pin by pin" in between them

Pin Name Notes
1 GND To ground
2 N/C Not connected
3 N/C
4 V_SENSORS 2.8V Switched. Power for accelerometer and gyroscope. and capacitor to ground. (and connected to TP12 in VX4 boards)
5 V_SENSORS
6 GND To ground. Self Test ("Pulled-down to GND" = normal operation. "Pulled-up to VDD" = self-test mode)
7 V_SENSORS 2.8V Switched. Power for accelerometer and gyroscope. and capacitor to ground. (and connected to TP12 in VX4 boards)
8 ACCL_X To a testpoint (TP33 in VX4 boards), then 33K resistor and capacitor to ground, then to another testpoint (TP36 in VX4 boards), then to Toshiba T6UN6EFG, pin 6
9 ACCL_Y To a testpoint (TP32 in VX4 boards), then 33K resistor and capacitor to ground, then to another testpoint (TP35 in VX4 boards), then to Toshiba T6UN6EFG, pin 7
10 ACCL_Z To a testpoint (TP34 in VX4 boards), then 33K resistor and capacitor to ground, then to another testpoint (TP37 in VX4 boards), then to Toshiba T6UN6EFG, pin 8
11 GND To ground
12 N/C Not connected
13 N/C
14 GND To ground
Unknown 14 pins
Unknown accelerometer 14 pins, pads

Only used in VX3_0.07 and VX3_0.08 board models (not on VX3_0.11). There is no available photo of this component because is not present in the wiki photos of the board models where it was used (and it was not posible to find it searching in google photos). By looking at the solder pads it can be seen it has the same package than the STMicroelectronics 32S3 but a different pinout

Pin Name Notes
1 N/C ?
2 ACCL_AXIS ? To Toshiba T6UN6EFG, pin ?
3 ACCL_AXIS ? To Toshiba T6UN6EFG, pin ?
4 ACCL_AXIS ? To Toshiba T6UN6EFG, pin ?
5 GND ?
6 V_SENSORS ?
7 V_SENSORS ?
8 N/C ?
9 N/C ?
10 GND ?
11 N/C ?
12 N/C ?
13 GND ?
14 N/C ?
STMicroelectronics 32S3
STMicroelectronics 32S3

http://www.st.com/en/mems-and-sensors/accelerometers.html

14 pins (pin numbers are painted in white in some boards). Accelerometer - 3-Axis

This component seems to be fully compatible with the KIONIX KXPC4 accelerometer, actually most boards models has solder points to mount both, the kionix and this one (the boards are "ready" for both, is at manufacturing time when they decides which component to use)

Most of the photos of the different board models here in wiki uses the kionix (and this is a coincidence)... but if you look at the photo of the other side of that same board you will see an "empty" placement for this chip instead, aligned with it, in a corner of the board. The few exceptions are the most older models

Pin Name Notes
1 V_SENSORS 2.8V Switched. Power for accelerometer and gyroscope. and capacitor to ground. (and connected to TP12 in VX4 boards)
2 V_SENSORS
3 V_SENSORS
4 V_SENSORS
5 GND To ground
6 GND
7 ACCL_Y To a testpoint (TP32 in VX4 boards), then 33K resistor and capacitor to ground, then to another testpoint (TP35 in VX4 boards), then to Toshiba T6UN6EFG, pin 7
8 ACCL_X To a testpoint (TP33 in VX4 boards), then 33K resistor and capacitor to ground, then to another testpoint (TP36 in VX4 boards), then to Toshiba T6UN6EFG, pin 6
9 ACCL_Z To a testpoint (TP34 in VX4 boards), then 33K resistor and capacitor to ground, then to another testpoint (TP37 in VX4 boards), then to Toshiba T6UN6EFG, pin 8
10 GND To ground
11 N/C Not connected
12 N/C
13 V_SENSORS 2.8V Switched. Power for accelerometer and gyroscope. and capacitor to ground. (and connected to TP12 in VX4 boards)
14 V_SENSORS

Gyroscopes

Murata ENC-03R
Murata ENC-03R
Pin Name Notes
1 V_SENSORS
2
3
4 GND
Epson-Toyocom X3500Z
Epson Toyocom X3500Z

Epson-Toyocom XV3500CB

Pin Name Notes
1
2
3
4 GND ?
5
6
7
8 V_SENSORS ?
STMicroelectronics Y35A
STMicroelectronics Y35A

http://www.st.com/en/mems-and-sensors/gyroscopes.html

10 pins (pin numbers follows the same order than the accelerometers using the same package)

Pin Name Notes
1 V_SENSORS 2.8V Switched. Power for accelerometer and gyroscope. and capacitor to ground. (and connected to TP12 in VX4 boards)
2 GND To ground
3 To 3 small SMD components one of each color... to ground
4 GND To ground
5 Not connected ?
6 GYRO To a testpoint (TP41 in VX4 boards), then 33K resistor and capacitor to ground, then to another testpoint (TP40 in VX4 boards), then to Toshiba T6UN6EFG, pin 9
7 Not connected ?
8 GND To ground
9 V_SENSORS 2.8V Switched. Power for accelerometer and gyroscope. and capacitor to ground. (and connected to TP12 in VX4 boards)
10 Not connected ?

Bluetooth

http://www.alps.com/products/e/category_tuner.html

ALPS 103A

ALPS 103A

ALPS 203A

ALPS 203A

ALPS 303A

ALPS 303A

Used in VX boards

ALPS 413A

ALPS 413A

Used in V3.5X, VX3, VX4 boards, and "some" Move Navigation Controller boards

The pin numbers can be seen on V3.5X boards

ALPS 413A Pinout
Pin # Name Port Description
1 GND To ground
2 V_WEIRD ? Diode to ground, and 15K resistor to pin 3
3 V_BT ? To Texas Instruments SN89062 pin 7, and to TP10 in VX4 boards
4 GND To ground
5 SLAVES_RESET To resistor network, and then to Texas Instruments SN84001 pin 2 and to Toshiba T6UN6EFG pin 11 in VX4 boards
6 BT_UART_RX ? To Toshiba T6UN6EFG pin 15 through resistor network
7 BT_UART_UNK ? To Toshiba T6UN6EFG pin 17
8 BT_UART_SELECT ? To Toshiba T6UN6EFG pin 14 through resistor
9 BT_UART_TX ? To Toshiba T6UN6EFG pin 16 through resistor network
10 USB_DATA+ USB connector through resistor (and TP3 in VX4 boards)
11 USB_DATA- USB connector through resistor (and TP2 in VX4 boards)
12 GND To ground
13 GND To ground
14 To Toshiba T6UN6EFG pin 18
15 To Texas Instruments SN89062 pin 19
16 To Texas Instruments SN89062 pin 14
17 UNK_SERVICE_CONNECTOR_1 To missing connector in PP4 and V2 boards... or... TP49 in V3.5X boards... or... TP76 in VX3 boards... or unlabeled testpoint in VX4, VX5, VX6 boards
18 UNK_SERVICE_CONNECTOR_2 To missing connector in PP4 and V2 boards... or... TP48 in V3.5X boards... or... TP75 in VX3 boards... or unlabeled testpoint in VX4, VX5, VX6 boards
19 UNK_SERVICE_CONNECTOR_3 To missing connector in PP4 and V2 boards... or... TP50 in V3.5X boards... or... TP77 in VX3 boards... or unlabeled testpoint in VX4, VX5, VX6 boards
20 GND To ground
21 GND To ground
22 UNK_SERVICE_CONNECTOR_4 To missing connector in PP4 and V2 boards... or... TP47 in V3.5X boards... or... TP74 in VX3 boards... or unlabeled testpoint in VX4, VX5, VX6 boards
23 GND To ground
24
25 V_STBY To Texas Instruments SN89062 pin 22
26 GND To ground
27 V_STBY To Texas Instruments SN89062 pin 22
28 Toshiba T6UN6EFG pin 19
29
30 GND To ground
31
32 GND To ground
33 GND To ground
34 ANT Antenna
35 GND To ground
36
37 To Texas Instruments SN89062 pin 13
38 To Texas Instruments SN89062 pin 15
39
40 GND To ground

ALPS 503A

Used in "some" Move Motion Controller boards

ALPS 603A

ALPS 603A
ALPS 603A VX7

Used in VX5, VX6, VX7 boards

Ways to tell if the controller is not original

Dualshock 3 fake (leds light transpassing the plastic case)
  • The SONY logo on the top of a counterfeit controller will not be aligned correctly with a originall controller.
  • Different sticker label
    • Counterfeit controllers have an extra screw on the back, hidden beneath the sticker.
    • The label on the back of a counterfeit controller will be paper sticker.
    • The label on the back of an official controller will have a thin layer of plastic over the paper sticker, giving it a matte finish and a more protected feel.
    • The paper label on the back of a counterfeit controller will not be correctly aligned with the shape of the device on the back, as it was most likely put on by hand.
  • Buttons
    • The center Home button on a counterfeit controller will be marginally darker than the Home button on an official controller.
    • Square, Triangle, Circle, and Cross buttons will be raised higher on a counterfeit controller.
    • The colors of these face buttons will be dull, compared to the bright colors of an official DualShock 3.
  • Sticks
    • Compared to an official controller, the seams beneath the analog sticks where the bottom and top halves of the plastic meet will be sharp.
  • Leds
    • The LEDs lights on the controller that signify which Player it is controlling will not be flush with the outside shell. Official controllers are relatively level all the way across. Some controllers may have minor protrusion of the LEDs, though this should not be significant.
    • When you turn on a counterfeit the controller, the flashing red lights on the outside will actually shine THROUGH the casing of the device, something that would never happen on an official product.
  • Syncing
    • If you have consistent trouble wirelessly syncing your controller to your PS3, the device may be counterfeit.

From: http://www.ps3hax.net/showthread.php?p=574042#post574042

Homebrew

  • PS Seismograph 0.2.0 from Deroad:
I have updated my homebrew to 0.2.0. now it supports all tv resolution (old versions were only for 1080p/i tv)
This is a simple Seismograph for ps3. it uses all the axis of the first controller.

[Download]http://store.brewology.com/ahomebrew.php?brewid=177

[GIT] https://github.com/wargio/PS-Seismograph

[Forum] http://www.ps3hax.net/showthread.php?t=53698

[Forum] http://psx-scene.com/forums/content/ps-seismograph-0-2-0-deroad-3121/

[Blog] http://devram0.blogspot.it/

  • Others : Jjolano's PS Vibe (3.55+?), PS Vibe Move Edition Deroad( or only ps move+ps eye compatible?), MultiMan: rumble and gyroscope function?

PC Software

for use of controller on PC

Related Hardware

USB host adapter

Other