Editing DualShock 3

Jump to navigation Jump to search
Warning: You are not logged in. Your IP address will be publicly visible if you make any edits. If you log in or create an account, your edits will be attributed to your username, along with other benefits.

The edit can be undone. Please check the comparison below to verify that this is what you want to do, and then publish the changes below to finish undoing the edit.

Latest revision Your text
Line 832: Line 832:
**The toshiba T6UN6EFG (pin 4) is connected to the battery + pin so it should work even if the texas instruments SN89062 is disabled, is unknown how much of the internal circuits of the toshiba T6UN6EFG are enabled by pin 4, but there are some other subcircuits of the toshiba T6UN6EFG that are powered by the standby power rail generated by the instruments SN89062 (the V_STBY pin in the table). The importance of this details is at logic level in the way the circuit works and who is the "boss" of the board
**The toshiba T6UN6EFG (pin 4) is connected to the battery + pin so it should work even if the texas instruments SN89062 is disabled, is unknown how much of the internal circuits of the toshiba T6UN6EFG are enabled by pin 4, but there are some other subcircuits of the toshiba T6UN6EFG that are powered by the standby power rail generated by the instruments SN89062 (the V_STBY pin in the table). The importance of this details is at logic level in the way the circuit works and who is the "boss" of the board
**The battery power rail has 3 connections, to the battery + pin connector, to the Texas Instruments SN89062 pin 16 (there is a direct connection in between this two), and also connected to the T6UN6EFG pin 4 by using an intermediate 147K/190K diode ?, and another diode of the same value to ground. The point of this diodes is to protect the toshiba chip because the other side of the battery power rail can work in two modes, when the controller is working and the only power source is the battery then the battery power rail provides power to the toshiba T6UN6EFG and Texas Instruments SN89062, and when the USB cable is connected then the Texas Instruments SN89062 checks the battery charge and starts the recharge, this recharge is made by using variable voltages (if the battery is very empty the voltage is higher and at the end of the chargue it starts reducing the intensity), the toshiba T6UN6EFG cant work with this variable voltages (other than using this voltage values as a check to know how the charge process is being made in a very accurate way), so the diodes seems to work as a barrier to stop that variable voltage to reach the toshiba T6UN6EFG
**The battery power rail has 3 connections, to the battery + pin connector, to the Texas Instruments SN89062 pin 16 (there is a direct connection in between this two), and also connected to the T6UN6EFG pin 4 by using an intermediate 147K/190K diode ?, and another diode of the same value to ground. The point of this diodes is to protect the toshiba chip because the other side of the battery power rail can work in two modes, when the controller is working and the only power source is the battery then the battery power rail provides power to the toshiba T6UN6EFG and Texas Instruments SN89062, and when the USB cable is connected then the Texas Instruments SN89062 checks the battery charge and starts the recharge, this recharge is made by using variable voltages (if the battery is very empty the voltage is higher and at the end of the chargue it starts reducing the intensity), the toshiba T6UN6EFG cant work with this variable voltages (other than using this voltage values as a check to know how the charge process is being made in a very accurate way), so the diodes seems to work as a barrier to stop that variable voltage to reach the toshiba T6UN6EFG
**All the boards has a component (with 5 pins) that protects the USB lines from [https://en.wikipedia.org/wiki/Electrostatic_discharge ESD] [https://en.wikipedia.org/wiki/Electromagnetic_interference EMI] and other kind of dangerous voltage effects that could appear on the USB data lines, is connected to the USB power rail (pin 4), standby power rail (pin 3), USB data + (pin 1), USB data - (pin 5), and to ground (pin 2). In some of the board models (the ones that has that side of the board printed such V2.5) it can be seen is labeled D1 (diode 1, the first and most important diode of the board), the component is listed in [https://www.electronicproducts.com/Sony_Playstation_3-whatsinside_text-10.aspx this link] as one of the parts of the PP4 boards and is marked 500 (when looking at a photo of a PP4 board search for the component labeled D1, and marked 500, next to the USB connector), sadly i could not find a accurate datasheet of it (if someone finds something please post it), but is something close to [http://www.syncpower.com/datasheet/SPE6V8UN.pdf this] (dual) or [https://assets.nexperia.com/documents/data-sheet/BZA800AVL_SERIES.pdf this] (quad). The component is actually a diode array made either with standard or [https://en.wikipedia.org/wiki/Transient-voltage-suppression_diode TVS diodes]. It can be defined as something such... "multichannel ESD protection diode array" (the 2 channels are the USB data lines + and -, and the 2 voltages are the USB or battery power sources). In VX4 version of the board this diode is marked N13, in VX5 N1W, in PP1 prototype (and PP4) 500, in VX7 N1D ?
**All the boards has a component (with 5 pins) that protects the USB lines from [https://en.wikipedia.org/wiki/Electrostatic_discharge ESD] [https://en.wikipedia.org/wiki/Electromagnetic_interference EMI] and other kind of dangerous voltage effects that could appear on the USB data lines, is connected to the USB power rail (pin 4), standby power rail (pin 3), USB data + (pin 1), USB data - (pin 5), and to ground (pin 2). In some of the board models (the ones that has that side of the board printed such V2.5) it can be seen is labeled D1 (diode 1, the first and most important diode of the board), the component is listed in [https://www.electronicproducts.com/Sony_Playstation_3-whatsinside_text-10.aspx this link] as one of the parts of the PP4 boards and is marked 500 (when looking at a photo of a PP4 board search for the component labeled D1, and marked 500, next to the USB connector), sadly i could not find a accurate datasheet of it (if someone finds something please post it), but is something close to [http://www.syncpower.com/datasheet/SPE6V8UN.pdf this]. The component is actually a diode array made either with standard or [https://en.wikipedia.org/wiki/Transient-voltage-suppression_diode TVS diodes]. It can be defined as something such... "2 channels, dual voltage, protection diode array" (the 2 channels are the USB data lines + and -, and the 2 voltages are the USB or battery power sources). In VX4 version of the board this diode is marked N13, in VX5 N1W, in PP1 prototype (and PP4) 500, in VX7 N1D ?


----
----
Please note that all contributions to PS3 Developer wiki are considered to be released under the GNU Free Documentation License 1.2 (see PS3 Developer wiki:Copyrights for details). If you do not want your writing to be edited mercilessly and redistributed at will, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource. Do not submit copyrighted work without permission!

To protect the wiki against automated edit spam, we kindly ask you to solve the following hCaptcha:

Cancel Editing help (opens in new window)