Talk:Keys: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
CelesteBlue (talk | contribs) No edit summary |
||
(7 intermediate revisions by 2 users not shown) | |||
Line 1: | Line 1: | ||
= | = Script to Decrypt CP Box EMC blob and preserve header = | ||
* (trim 0x80 bytes, entrypoint at 0x100C00) | * (trim 0x80 bytes, entrypoint at 0x100C00) | ||
< | <source lang="python3"> | ||
import struct | import struct | ||
from binascii import unhexlify as uhx | from binascii import unhexlify as uhx | ||
Line 14: | Line 14: | ||
CIPHERKEYSEMC = ['F0332357C8CFAE7E7E26E52BE9E3AED4'] | CIPHERKEYSEMC = ['F0332357C8CFAE7E7E26E52BE9E3AED4'] | ||
CIPHERKEYSEAP = [' | CIPHERKEYSEAP = ['262555E3CF062B070B5AA2CDDF3A5D0E'] | ||
HASHERKEYEMC = ['00000000000000000000000000000000'] | HASHERKEYEMC = ['00000000000000000000000000000000'] | ||
HASHERKEYEAP = [' | HASHERKEYEAP = ['1EE22F6A189E7D99A28B9A96D3C4DBA2'] | ||
ZEROS128 = ['00000000000000000000000000000000'] | ZEROS128 = ['00000000000000000000000000000000'] | ||
Line 90: | Line 90: | ||
if __name__ == '__main__': | if __name__ == '__main__': | ||
main(len(sys.argv), sys.argv) | main(len(sys.argv), sys.argv) | ||
</ | </source> | ||
= | = Script to Encrypt CP Box EMC blob (Requires Header from Decrypt Script) = | ||
== | <source lang="python3"> | ||
import struct | |||
from binascii import unhexlify as uhx | |||
from binascii import hexlify as hx | |||
from Crypto.Cipher import AES | |||
from Crypto.Hash import SHA, HMAC | |||
import os | |||
import sys | |||
CIPHERKEYSEMC = ['F0332357C8CFAE7E7E26E52BE9E3AED4'] | |||
CIPHERKEYSEAP = ['262555E3CF062B070B5AA2CDDF3A5D0E'] | |||
HASHERKEYEMC = ['00000000000000000000000000000000'] | |||
HASHERKEYEAP = ['1EE22F6A189E7D99A28B9A96D3C4DBA2'] | |||
ZEROS128 = ['00000000000000000000000000000000'] | |||
def aes_decrypt_cbc(key, iv, input): | |||
return AES.new(key, AES.MODE_CBC, iv).decrypt(input) | |||
def aes_encrypt_cbc(key, iv, input): | |||
return AES.new(key, AES.MODE_CBC, iv).encrypt(input) | |||
def emc_decrypt_header(hdr): | |||
return hdr[:0x30] + aes_decrypt_cbc(uhx(CIPHERKEYSEMC[0]), uhx(ZEROS128[0]), hdr[0x30:0x80]) | |||
def emc_encrypt_header(hdr): | |||
return hdr[:0x30] + aes_encrypt_cbc(uhx(CIPHERKEYSEMC[0]), uhx(ZEROS128[0]), hdr[0x30:]) | |||
def eap_decrypt_header(hdr): | |||
return hdr[:0x30] + aes_decrypt_cbc(uhx(CIPHERKEYSEAP[0]), uhx(ZEROS128[0]), hdr[0x30:0x80]) | |||
def eap_encrypt_header(hdr): | |||
return hdr[:0x30] + aes_encrypt_cbc(uhx(CIPHERKEYSEAP[0]), uhx(ZEROS128[0]), hdr[0x30:0x80]) | |||
def main(argc, argv): | |||
with open(sys.argv[1], 'rb') as f: | |||
data = f.read() | |||
type = data[7:8] | |||
if type == uhx('48'): | |||
print 'EMC' | |||
body_len = struct.unpack('<L', data[0xc:0x10])[0] | |||
body = data[0x80:0x80+body_len] | |||
body_aes_key = data[0x30:0x40] | |||
ebody = aes_encrypt_cbc(body_aes_key, uhx(ZEROS128[0]), body) | |||
body_hmac_key = data[0x40:0x50] | |||
bhmac = HMAC.new(body_hmac_key, ebody, SHA) | |||
hdr = (data[0:0x50] + uhx(bhmac.hexdigest()) + data[0x64:0x6C]) | |||
hhmac = HMAC.new(uhx(HASHERKEYEMC[0]), hdr, SHA) | |||
hdr = (hdr + uhx(hhmac.hexdigest())) | |||
hdr = emc_encrypt_header(hdr) | |||
print bhmac.hexdigest() | |||
print hhmac.hexdigest() | |||
with open(sys.argv[1] + '.bin', 'wb') as g: | |||
g.write(hdr+ebody) | |||
if type == uhx('68'): | |||
print 'EAP' | |||
body_len = struct.unpack('<L', data[0xc:0x10])[0] | |||
body = data[0x80:0x80+body_len] | |||
body_aes_key = data[0x30:0x40] | |||
ebody = aes_encrypt_cbc(body_aes_key, uhx(ZEROS128[0]), body) | |||
body_hmac_key = data[0x40:0x50] | |||
bhmac = HMAC.new(body_hmac_key, ebody, SHA) | |||
hdr = (data[0:0x50] + uhx(bhmac.hexdigest()) + data[0x64:0x6C]) | |||
hhmac = HMAC.new(uhx(HASHERKEYEAP[0]), hdr, SHA) | |||
hdr = (hdr + uhx(hhmac.hexdigest())) | |||
hdr = eap_encrypt_header(hdr) | |||
print bhmac.hexdigest() | |||
print hhmac.hexdigest() | |||
with open(sys.argv[1] + '.bin', 'wb') as g: | |||
g.write(hdr+ebody) | |||
if __name__ == '__main__': | |||
main(len(sys.argv), sys.argv) | |||
</source> | |||
= Script to Decrypt or Encrypt EAP Kernel = | |||
<source lang="python3"> | |||
#!/usr/bin/env python | |||
import sys, os, struct | |||
import hashlib, hmac | |||
from binascii import unhexlify as uhx | |||
from Crypto.Cipher import AES | |||
from itertools import cycle | |||
try: | |||
# Python 2 | |||
from itertools import izip | |||
except: | |||
pass | |||
def as_uint32(x): | |||
return x & 0xFFFFFFFF | |||
def align_up(x, alignment): | |||
return (x + (alignment - 1)) & ~(alignment - 1) | |||
def align_down(x, alignment): | |||
return x & ~(alignment - 1) | |||
def sha1(data): | |||
return hashlib.sha1(data).digest() | |||
def hmac_sha1(key, data): | |||
return hmac.new(key=key, msg=data, digestmod=hashlib.sha1).digest() | |||
def xor_string(key, data): | |||
# Python 2 | |||
try: | |||
return ''.join(chr(ord(x) ^ ord(y)) for (x, y) in izip(data, cycle(key))) | |||
# Python 3 | |||
except: | |||
return bytes(x ^ y for x, y in zip(data, cycle(key))) | |||
def aes_encrypt_ecb(key, input): | |||
aes = AES.new(key, AES.MODE_ECB) | |||
output = aes.encrypt(input) | |||
return output | |||
def aes_decrypt_ecb(key, input): | |||
aes = AES.new(key, AES.MODE_ECB) | |||
output = aes.decrypt(input) | |||
return output | |||
def aes_encrypt_cbc_cts(key, iv, data): | |||
result = b'' | |||
size = len(data) | |||
if size == 0: | |||
return result | |||
crypto = AES.new(key, AES.MODE_CBC, iv) | |||
size_aligned = align_down(size, crypto.block_size) | |||
result = crypto.encrypt(data[:size_aligned]) | |||
size_left = size - size_aligned | |||
if size_left > 0: | |||
assert size_left < crypto.block_size | |||
crypto = AES.new(key, AES.MODE_ECB) | |||
if size_aligned > AES.block_size: | |||
tmp = crypto.encrypt(result[size_aligned - AES.block_size:size_aligned]) | |||
else: | |||
tmp = crypto.encrypt(iv) | |||
result += xor_string(data[size_aligned:], tmp[:size_left]) | |||
#assert aes_decrypt_cbc_cts(key, iv, result) == data | |||
return result | |||
def aes_decrypt_cbc_cts(key, iv, data): | |||
result = b'' | |||
size = len(data) | |||
if size == 0: | |||
return result | |||
crypto = AES.new(key, AES.MODE_CBC, iv) | |||
size_aligned = align_down(size, crypto.block_size) | |||
result = crypto.decrypt(data[:size_aligned]) | |||
size_left = size - size_aligned | |||
if size_left > 0: | |||
assert size_left < crypto.block_size | |||
crypto = AES.new(key, AES.MODE_ECB) | |||
if size_aligned > AES.block_size: | |||
tmp = crypto.encrypt(data[size_aligned - AES.block_size:size_aligned]) | |||
else: | |||
tmp = crypto.encrypt(iv) | |||
result += xor_string(data[size_aligned:], tmp[:size_left]) | |||
#assert aes_encrypt_cbc_cts(key, iv, result) == data | |||
return result | |||
if len(sys.argv) < 4: | |||
script_file_name = os.path.split(sys.argv[0])[1] | |||
print('usage: {0} <input file> <output file> <enc/dec> [personality]'.format(script_file_name)) | |||
sys.exit() | |||
input_file_path = sys.argv[1] | |||
if not os.path.isfile(input_file_path): | |||
print('error: invalid input file specified') | |||
sys.exit() | |||
output_file_path = sys.argv[2] | |||
if os.path.exists(output_file_path) and not os.path.isfile(output_file_path): | |||
print('error: invalid output file specified') | |||
sys.exit() | |||
mode = sys.argv[3].lower() | |||
if mode != 'enc' and mode != 'dec': | |||
print('error: invalid mode') | |||
sys.exit() | |||
# total = 128 bits, symbol = 6 bits | |||
# uid max length = 8 symbols = 48 bits | |||
uid_alphabet = ' abcdefghijklmnopqrstuvwxyz' # 5 bits per symbol, 3 bits per byte | |||
uid_max_length = 8 | |||
def personalize(seed, personality): | |||
if len(seed) != 16: | |||
return False | |||
personality = personality.strip() | |||
if len(personality) == 0: | |||
print('error: empty personality') | |||
return False | |||
if len(personality) > uid_max_length: | |||
print('error: too large personality') | |||
return False | |||
personality = personality.lower().ljust(uid_max_length, ' ') | |||
seed = list(seed) | |||
pos = 0 | |||
for c in personality: | |||
idx = uid_alphabet.find(c) | |||
if idx < 0: | |||
print('error: invalid character at personality: {0}'.format(c)) | |||
return False | |||
c = ord(seed[pos + 0]) & ~0b00010011 | |||
c |= (idx & 0b10000) | |||
c |= (idx & 0b10) | |||
c |= (idx & 0b1) | |||
seed[pos + 0] = chr(c) | |||
c = ord(seed[pos + 1]) & ~0b00001100 | |||
c |= (idx & 0b1000) | |||
c |= (idx & 0b100) | |||
seed[pos + 1] = chr(c) | |||
pos += 2 | |||
return ''.join(seed) | |||
def unpersonalize(seed): | |||
if len(seed) != 16: | |||
return False | |||
== | personality = '' | ||
seed = list(seed) | |||
pos = 0 | |||
for i in range(uid_max_length): | |||
c1, c2, idx = ord(seed[i * 2 + 0]), ord(seed[i * 2 + 1]), 0 | |||
idx |= (c1 & 0b10000) | |||
idx |= (c1 & 0b10) | |||
idx |= (c1 & 0b1) | |||
== | idx |= (c2 & 0b1000) | ||
idx |= (c2 & 0b100) | |||
personality += uid_alphabet[idx] | |||
return personality | |||
seed = os.urandom(16) | |||
if len(sys.argv) > 4: | |||
seed = personalize(seed, sys.argv[4]) | |||
if seed == False: | |||
sys.exit() | |||
== | MAGIC = 0x12EBC95C | ||
EXPECTED_VERSION = 0x10000 | |||
PARTITION_SIZE = 16 * 1024 * 1024 | |||
BLOB_MAGIC = 0x4B726E00 | |||
SECTOR_SIZE = 0x200 | |||
HEADER_FMT = '<II16s20s' | |||
BLOB_INFO_FMT = '<III456x' | |||
# CP key | |||
ENC_KEY = uhx('CBCC1E53F42C1CB44D965E233CD792A8') | |||
MAC_KEY = uhx('683D6E2E496687CB5B831DA12BCB001B') | |||
== | if mode == 'dec': | ||
with open(input_file_path, 'rb') as f: | |||
# read and decrypt blob info | |||
magic, version, iv, blob_info_hash = struct.unpack(HEADER_FMT, f.read(struct.calcsize(HEADER_FMT))) | |||
if magic != MAGIC: | |||
print('error: invalid header magic: {0:08X}'.format(magic)) | |||
sys.exit() | |||
if version != EXPECTED_VERSION: | |||
print('error: invalid version: 0x{0:08X}'.format(version)) | |||
sys.exit() | |||
#print('iv: {0}'.format(iv.encode('hex').upper())) | |||
#personality = unpersonalize(iv) | |||
#print('personality: {0}'.format(personality)) | |||
data = f.read(SECTOR_SIZE - struct.calcsize(HEADER_FMT)) | |||
if data == '' or len(data) != (SECTOR_SIZE - struct.calcsize(HEADER_FMT)): | |||
print('error: insufficient blob info data') | |||
print(len(data)) | |||
print(SECTOR_SIZE - struct.calcsize(HEADER_FMT)) | |||
sys.exit() | |||
data = aes_decrypt_cbc_cts(ENC_KEY, iv, data) | |||
#print(data.encode('hex')) | |||
blob_info_calc_hash = hmac_sha1(MAC_KEY, data) | |||
if blob_info_calc_hash != blob_info_hash: | |||
print('warning: invalid blob info hash') | |||
# parse blob info | |||
magic, size, offset = struct.unpack(BLOB_INFO_FMT, data[:struct.calcsize(BLOB_INFO_FMT)]) | |||
if magic != BLOB_MAGIC: | |||
print('error: invalid blob info magic: 0x{0:08X}'.format(magic)) | |||
#sys.exit() | |||
== | # read blob data | ||
f.seek(offset) | |||
data = f.read(size) | |||
if data == '' or len(data) != size: | |||
print(len(data)) | |||
print(size) | |||
print('error: insufficient blob data') | |||
sys.exit() | |||
# decrypt blob | |||
magic, version, iv, blob_hash = struct.unpack(HEADER_FMT, data[:struct.calcsize(HEADER_FMT)]) | |||
if magic != MAGIC: | |||
print('error: invalid header magic: 0x{0:08X}'.format(magic)) | |||
sys.exit() | |||
if version != EXPECTED_VERSION: | |||
print('error: invalid version: 0x{0:08X}'.format(version)) | |||
sys.exit() | |||
data = aes_decrypt_cbc_cts(ENC_KEY, iv, data[struct.calcsize(HEADER_FMT):]) | |||
blob_calc_hash = hmac_sha1(MAC_KEY, data) | |||
if blob_calc_hash != blob_hash: | |||
print('warning: invalid blob hash') | |||
== | # write blob | ||
with open(output_file_path, 'wb') as f: | |||
f.write(data) | |||
elif mode == 'enc': | |||
# generate random iv | |||
iv = seed | |||
with open(input_file_path, 'rb') as f: | |||
# read and encrypt blob data | |||
data = f.read() | |||
blob_hash = hmac_sha1(MAC_KEY, data) | |||
data = aes_encrypt_cbc_cts(ENC_KEY, iv, data) | |||
data = struct.pack(HEADER_FMT, MAGIC, EXPECTED_VERSION, iv, blob_hash) + data | |||
== | # generate and encrypt blob info | ||
size = len(data) | |||
tmp_data = struct.pack(BLOB_INFO_FMT, BLOB_MAGIC, size, SECTOR_SIZE) | |||
blob_info_hash = hmac_sha1(MAC_KEY, tmp_data) | |||
tmp_data = aes_encrypt_cbc_cts(ENC_KEY, iv, tmp_data) | |||
tmp_data = struct.pack(HEADER_FMT, MAGIC, EXPECTED_VERSION, iv, blob_info_hash) + tmp_data | |||
< | # write everything | ||
total_size = len(tmp_data) + len(data) | |||
with open(output_file_path, 'wb') as f: | |||
f.write(tmp_data) | |||
f.write(data) | |||
padding_size = align_up(total_size, SECTOR_SIZE) - total_size | |||
if padding_size > 0: | |||
f.write(b'\0' * padding_size) | |||
f.seek(PARTITION_SIZE) | |||
</ | f.truncate() | ||
</source> | |||
= Script to Decrypt env.img = | |||
<source lang="python3"> | |||
import sys | |||
import struct | |||
def unscramble(data): | |||
data_size = len(data) | |||
num_dwords = data_size // 4 | |||
magic = 0x012BB055 # TODO: constant from header @ 0xC | |||
new_data = bytearray() | |||
for i in range(num_dwords): | |||
value = struct.unpack_from('<I', data, i * 4)[0] | |||
value, magic = value ^ magic, value | |||
new_data += struct.pack('<I', value) | |||
return new_data | |||
with open(sys.argv[1],"rb") as file: | |||
file.seek(0x40) | |||
data=file.read(0xFF80) | |||
new_data = unscramble(data) | |||
with open(sys.argv[2],"wb") as file2: | |||
file2.write(new_data) | |||
</source> | |||
= Fake Keys = | = Fake Keys = | ||
This section should explain in what the following keys are fake. | |||
<pre> | <pre> |
Latest revision as of 06:13, 1 January 2025
Script to Decrypt CP Box EMC blob and preserve header[edit source]
- (trim 0x80 bytes, entrypoint at 0x100C00)
import struct
from binascii import unhexlify as uhx
from binascii import hexlify as hx
from Crypto.Cipher import AES
from Crypto.Hash import SHA, HMAC
import os
import sys
CIPHERKEYSEMC = ['F0332357C8CFAE7E7E26E52BE9E3AED4']
CIPHERKEYSEAP = ['262555E3CF062B070B5AA2CDDF3A5D0E']
HASHERKEYEMC = ['00000000000000000000000000000000']
HASHERKEYEAP = ['1EE22F6A189E7D99A28B9A96D3C4DBA2']
ZEROS128 = ['00000000000000000000000000000000']
def aes_decrypt_cbc(key, iv, input):
return AES.new(key, AES.MODE_CBC, iv).decrypt(input)
def aes_encrypt_cbc(key, iv, input):
return AES.new(key, AES.MODE_CBC, iv).encrypt(input)
def emc_decrypt_header(hdr):
return hdr[:0x30] + aes_decrypt_cbc(uhx(CIPHERKEYSEMC[0]), uhx(ZEROS128[0]), hdr[0x30:0x80])
def emc_encrypt_header(hdr):
return hdr[:0x30] + aes_encrypt_cbc(uhx(CIPHERKEYSEMC[0]), uhx(ZEROS128[0]), hdr[0x30:0x80])
def eap_decrypt_header(hdr):
return hdr[:0x30] + aes_decrypt_cbc(uhx(CIPHERKEYSEAP[0]), uhx(ZEROS128[0]), hdr[0x30:0x80])
def eap_encrypt_header(hdr):
return hdr[:0x30] + aes_encrypt_cbc(uhx(CIPHERKEYSEAP[0]), uhx(ZEROS128[0]), hdr[0x30:0x80])
def main(argc, argv):
with open(sys.argv[1], 'rb') as f:
data = f.read(0x80)
type = data[7:8]
if type == uhx('48'):
print 'EMC'
hdr = emc_decrypt_header(data)
body_aes_key = hdr[0x30:0x40]
body_hmac_key = hdr[0x40:0x50]
body_hmac = hdr[0x50:0x64]
zeroes = hdr[0x64:0x6C]
print(hx(zeroes))
header_hmac = hdr[0x6C:0x80]
body_len = struct.unpack('<L', hdr[0xc:0x10])[0]
print body_len
ehdr = hdr[:0x6C]
ebody = f.read(body_len)
bhmac = HMAC.new(body_hmac_key, ebody, SHA)
hhmac = HMAC.new(uhx(HASHERKEYEMC[0]), ehdr, SHA)
body = aes_decrypt_cbc(body_aes_key, uhx(ZEROS128[0]), ebody)
print bhmac.hexdigest()
print hhmac.hexdigest()
print hx(body_hmac)
print hx(header_hmac)
with open(sys.argv[1] + '.bin', 'wb') as g:
g.write(hdr+body)
if type == uhx('68'):
print 'EAP'
hdr = eap_decrypt_header(data)
body_aes_key = hdr[0x30:0x40]
body_hmac_key = hdr[0x40:0x50]
body_hmac = hdr[0x50:0x64]
zeroes = hdr[0x64:0x6C]
print(hx(zeroes))
header_hmac = hdr[0x6C:0x80]
body_len = struct.unpack('<L', hdr[0xc:0x10])[0]
print body_len
ehdr = hdr[:0x6C]
ebody = f.read(body_len)
bhmac = HMAC.new(body_hmac_key, ebody, SHA)
hhmac = HMAC.new(uhx(HASHERKEYEAP[0]), ehdr, SHA)
body = aes_decrypt_cbc(body_aes_key, uhx(ZEROS128[0]), ebody)
print bhmac.hexdigest()
print hhmac.hexdigest()
print hx(body_hmac)
print hx(header_hmac)
with open(sys.argv[1] + '.bin', 'wb') as g:
g.write(hdr+body)
if __name__ == '__main__':
main(len(sys.argv), sys.argv)
Script to Encrypt CP Box EMC blob (Requires Header from Decrypt Script)[edit source]
import struct
from binascii import unhexlify as uhx
from binascii import hexlify as hx
from Crypto.Cipher import AES
from Crypto.Hash import SHA, HMAC
import os
import sys
CIPHERKEYSEMC = ['F0332357C8CFAE7E7E26E52BE9E3AED4']
CIPHERKEYSEAP = ['262555E3CF062B070B5AA2CDDF3A5D0E']
HASHERKEYEMC = ['00000000000000000000000000000000']
HASHERKEYEAP = ['1EE22F6A189E7D99A28B9A96D3C4DBA2']
ZEROS128 = ['00000000000000000000000000000000']
def aes_decrypt_cbc(key, iv, input):
return AES.new(key, AES.MODE_CBC, iv).decrypt(input)
def aes_encrypt_cbc(key, iv, input):
return AES.new(key, AES.MODE_CBC, iv).encrypt(input)
def emc_decrypt_header(hdr):
return hdr[:0x30] + aes_decrypt_cbc(uhx(CIPHERKEYSEMC[0]), uhx(ZEROS128[0]), hdr[0x30:0x80])
def emc_encrypt_header(hdr):
return hdr[:0x30] + aes_encrypt_cbc(uhx(CIPHERKEYSEMC[0]), uhx(ZEROS128[0]), hdr[0x30:])
def eap_decrypt_header(hdr):
return hdr[:0x30] + aes_decrypt_cbc(uhx(CIPHERKEYSEAP[0]), uhx(ZEROS128[0]), hdr[0x30:0x80])
def eap_encrypt_header(hdr):
return hdr[:0x30] + aes_encrypt_cbc(uhx(CIPHERKEYSEAP[0]), uhx(ZEROS128[0]), hdr[0x30:0x80])
def main(argc, argv):
with open(sys.argv[1], 'rb') as f:
data = f.read()
type = data[7:8]
if type == uhx('48'):
print 'EMC'
body_len = struct.unpack('<L', data[0xc:0x10])[0]
body = data[0x80:0x80+body_len]
body_aes_key = data[0x30:0x40]
ebody = aes_encrypt_cbc(body_aes_key, uhx(ZEROS128[0]), body)
body_hmac_key = data[0x40:0x50]
bhmac = HMAC.new(body_hmac_key, ebody, SHA)
hdr = (data[0:0x50] + uhx(bhmac.hexdigest()) + data[0x64:0x6C])
hhmac = HMAC.new(uhx(HASHERKEYEMC[0]), hdr, SHA)
hdr = (hdr + uhx(hhmac.hexdigest()))
hdr = emc_encrypt_header(hdr)
print bhmac.hexdigest()
print hhmac.hexdigest()
with open(sys.argv[1] + '.bin', 'wb') as g:
g.write(hdr+ebody)
if type == uhx('68'):
print 'EAP'
body_len = struct.unpack('<L', data[0xc:0x10])[0]
body = data[0x80:0x80+body_len]
body_aes_key = data[0x30:0x40]
ebody = aes_encrypt_cbc(body_aes_key, uhx(ZEROS128[0]), body)
body_hmac_key = data[0x40:0x50]
bhmac = HMAC.new(body_hmac_key, ebody, SHA)
hdr = (data[0:0x50] + uhx(bhmac.hexdigest()) + data[0x64:0x6C])
hhmac = HMAC.new(uhx(HASHERKEYEAP[0]), hdr, SHA)
hdr = (hdr + uhx(hhmac.hexdigest()))
hdr = eap_encrypt_header(hdr)
print bhmac.hexdigest()
print hhmac.hexdigest()
with open(sys.argv[1] + '.bin', 'wb') as g:
g.write(hdr+ebody)
if __name__ == '__main__':
main(len(sys.argv), sys.argv)
Script to Decrypt or Encrypt EAP Kernel[edit source]
#!/usr/bin/env python
import sys, os, struct
import hashlib, hmac
from binascii import unhexlify as uhx
from Crypto.Cipher import AES
from itertools import cycle
try:
# Python 2
from itertools import izip
except:
pass
def as_uint32(x):
return x & 0xFFFFFFFF
def align_up(x, alignment):
return (x + (alignment - 1)) & ~(alignment - 1)
def align_down(x, alignment):
return x & ~(alignment - 1)
def sha1(data):
return hashlib.sha1(data).digest()
def hmac_sha1(key, data):
return hmac.new(key=key, msg=data, digestmod=hashlib.sha1).digest()
def xor_string(key, data):
# Python 2
try:
return ''.join(chr(ord(x) ^ ord(y)) for (x, y) in izip(data, cycle(key)))
# Python 3
except:
return bytes(x ^ y for x, y in zip(data, cycle(key)))
def aes_encrypt_ecb(key, input):
aes = AES.new(key, AES.MODE_ECB)
output = aes.encrypt(input)
return output
def aes_decrypt_ecb(key, input):
aes = AES.new(key, AES.MODE_ECB)
output = aes.decrypt(input)
return output
def aes_encrypt_cbc_cts(key, iv, data):
result = b''
size = len(data)
if size == 0:
return result
crypto = AES.new(key, AES.MODE_CBC, iv)
size_aligned = align_down(size, crypto.block_size)
result = crypto.encrypt(data[:size_aligned])
size_left = size - size_aligned
if size_left > 0:
assert size_left < crypto.block_size
crypto = AES.new(key, AES.MODE_ECB)
if size_aligned > AES.block_size:
tmp = crypto.encrypt(result[size_aligned - AES.block_size:size_aligned])
else:
tmp = crypto.encrypt(iv)
result += xor_string(data[size_aligned:], tmp[:size_left])
#assert aes_decrypt_cbc_cts(key, iv, result) == data
return result
def aes_decrypt_cbc_cts(key, iv, data):
result = b''
size = len(data)
if size == 0:
return result
crypto = AES.new(key, AES.MODE_CBC, iv)
size_aligned = align_down(size, crypto.block_size)
result = crypto.decrypt(data[:size_aligned])
size_left = size - size_aligned
if size_left > 0:
assert size_left < crypto.block_size
crypto = AES.new(key, AES.MODE_ECB)
if size_aligned > AES.block_size:
tmp = crypto.encrypt(data[size_aligned - AES.block_size:size_aligned])
else:
tmp = crypto.encrypt(iv)
result += xor_string(data[size_aligned:], tmp[:size_left])
#assert aes_encrypt_cbc_cts(key, iv, result) == data
return result
if len(sys.argv) < 4:
script_file_name = os.path.split(sys.argv[0])[1]
print('usage: {0} <input file> <output file> <enc/dec> [personality]'.format(script_file_name))
sys.exit()
input_file_path = sys.argv[1]
if not os.path.isfile(input_file_path):
print('error: invalid input file specified')
sys.exit()
output_file_path = sys.argv[2]
if os.path.exists(output_file_path) and not os.path.isfile(output_file_path):
print('error: invalid output file specified')
sys.exit()
mode = sys.argv[3].lower()
if mode != 'enc' and mode != 'dec':
print('error: invalid mode')
sys.exit()
# total = 128 bits, symbol = 6 bits
# uid max length = 8 symbols = 48 bits
uid_alphabet = ' abcdefghijklmnopqrstuvwxyz' # 5 bits per symbol, 3 bits per byte
uid_max_length = 8
def personalize(seed, personality):
if len(seed) != 16:
return False
personality = personality.strip()
if len(personality) == 0:
print('error: empty personality')
return False
if len(personality) > uid_max_length:
print('error: too large personality')
return False
personality = personality.lower().ljust(uid_max_length, ' ')
seed = list(seed)
pos = 0
for c in personality:
idx = uid_alphabet.find(c)
if idx < 0:
print('error: invalid character at personality: {0}'.format(c))
return False
c = ord(seed[pos + 0]) & ~0b00010011
c |= (idx & 0b10000)
c |= (idx & 0b10)
c |= (idx & 0b1)
seed[pos + 0] = chr(c)
c = ord(seed[pos + 1]) & ~0b00001100
c |= (idx & 0b1000)
c |= (idx & 0b100)
seed[pos + 1] = chr(c)
pos += 2
return ''.join(seed)
def unpersonalize(seed):
if len(seed) != 16:
return False
personality = ''
seed = list(seed)
pos = 0
for i in range(uid_max_length):
c1, c2, idx = ord(seed[i * 2 + 0]), ord(seed[i * 2 + 1]), 0
idx |= (c1 & 0b10000)
idx |= (c1 & 0b10)
idx |= (c1 & 0b1)
idx |= (c2 & 0b1000)
idx |= (c2 & 0b100)
personality += uid_alphabet[idx]
return personality
seed = os.urandom(16)
if len(sys.argv) > 4:
seed = personalize(seed, sys.argv[4])
if seed == False:
sys.exit()
MAGIC = 0x12EBC95C
EXPECTED_VERSION = 0x10000
PARTITION_SIZE = 16 * 1024 * 1024
BLOB_MAGIC = 0x4B726E00
SECTOR_SIZE = 0x200
HEADER_FMT = '<II16s20s'
BLOB_INFO_FMT = '<III456x'
# CP key
ENC_KEY = uhx('CBCC1E53F42C1CB44D965E233CD792A8')
MAC_KEY = uhx('683D6E2E496687CB5B831DA12BCB001B')
if mode == 'dec':
with open(input_file_path, 'rb') as f:
# read and decrypt blob info
magic, version, iv, blob_info_hash = struct.unpack(HEADER_FMT, f.read(struct.calcsize(HEADER_FMT)))
if magic != MAGIC:
print('error: invalid header magic: {0:08X}'.format(magic))
sys.exit()
if version != EXPECTED_VERSION:
print('error: invalid version: 0x{0:08X}'.format(version))
sys.exit()
#print('iv: {0}'.format(iv.encode('hex').upper()))
#personality = unpersonalize(iv)
#print('personality: {0}'.format(personality))
data = f.read(SECTOR_SIZE - struct.calcsize(HEADER_FMT))
if data == '' or len(data) != (SECTOR_SIZE - struct.calcsize(HEADER_FMT)):
print('error: insufficient blob info data')
print(len(data))
print(SECTOR_SIZE - struct.calcsize(HEADER_FMT))
sys.exit()
data = aes_decrypt_cbc_cts(ENC_KEY, iv, data)
#print(data.encode('hex'))
blob_info_calc_hash = hmac_sha1(MAC_KEY, data)
if blob_info_calc_hash != blob_info_hash:
print('warning: invalid blob info hash')
# parse blob info
magic, size, offset = struct.unpack(BLOB_INFO_FMT, data[:struct.calcsize(BLOB_INFO_FMT)])
if magic != BLOB_MAGIC:
print('error: invalid blob info magic: 0x{0:08X}'.format(magic))
#sys.exit()
# read blob data
f.seek(offset)
data = f.read(size)
if data == '' or len(data) != size:
print(len(data))
print(size)
print('error: insufficient blob data')
sys.exit()
# decrypt blob
magic, version, iv, blob_hash = struct.unpack(HEADER_FMT, data[:struct.calcsize(HEADER_FMT)])
if magic != MAGIC:
print('error: invalid header magic: 0x{0:08X}'.format(magic))
sys.exit()
if version != EXPECTED_VERSION:
print('error: invalid version: 0x{0:08X}'.format(version))
sys.exit()
data = aes_decrypt_cbc_cts(ENC_KEY, iv, data[struct.calcsize(HEADER_FMT):])
blob_calc_hash = hmac_sha1(MAC_KEY, data)
if blob_calc_hash != blob_hash:
print('warning: invalid blob hash')
# write blob
with open(output_file_path, 'wb') as f:
f.write(data)
elif mode == 'enc':
# generate random iv
iv = seed
with open(input_file_path, 'rb') as f:
# read and encrypt blob data
data = f.read()
blob_hash = hmac_sha1(MAC_KEY, data)
data = aes_encrypt_cbc_cts(ENC_KEY, iv, data)
data = struct.pack(HEADER_FMT, MAGIC, EXPECTED_VERSION, iv, blob_hash) + data
# generate and encrypt blob info
size = len(data)
tmp_data = struct.pack(BLOB_INFO_FMT, BLOB_MAGIC, size, SECTOR_SIZE)
blob_info_hash = hmac_sha1(MAC_KEY, tmp_data)
tmp_data = aes_encrypt_cbc_cts(ENC_KEY, iv, tmp_data)
tmp_data = struct.pack(HEADER_FMT, MAGIC, EXPECTED_VERSION, iv, blob_info_hash) + tmp_data
# write everything
total_size = len(tmp_data) + len(data)
with open(output_file_path, 'wb') as f:
f.write(tmp_data)
f.write(data)
padding_size = align_up(total_size, SECTOR_SIZE) - total_size
if padding_size > 0:
f.write(b'\0' * padding_size)
f.seek(PARTITION_SIZE)
f.truncate()
Script to Decrypt env.img[edit source]
import sys
import struct
def unscramble(data):
data_size = len(data)
num_dwords = data_size // 4
magic = 0x012BB055 # TODO: constant from header @ 0xC
new_data = bytearray()
for i in range(num_dwords):
value = struct.unpack_from('<I', data, i * 4)[0]
value, magic = value ^ magic, value
new_data += struct.pack('<I', value)
return new_data
with open(sys.argv[1],"rb") as file:
file.seek(0x40)
data=file.read(0xFF80)
new_data = unscramble(data)
with open(sys.argv[2],"wb") as file2:
file2.write(new_data)
Fake Keys[edit source]
This section should explain in what the following keys are fake.
PK0=C1E20574525331AE3E9ABFDFE3E64EB3AA1FD0CD30E3C286CEB84C0C280574E6 PK1=B8F64A4C3DC41A01C039BD1EBCDA3F9E25461024C8817CA8A0281126521884D0 PK2=5B031A912D8C2C8BACD4A919274827EBF4F855041C6B911DEABD26FCC38B2D86 PK3=53C9558316D34E6036A372BDA0238B4AB2D1B3E22074065BDD22DBC8584AD4C7 PK4=FBF4549BB1278E2336071887439BF819ACBB4292F7DA46729A76217419243C4B PK5=89132F5E01643367499C866DB7B1E7C0C8040EF7DE13516BC7776D97FAB9DB7B PK6=7FF33CBD9689177E5D8FD6BD2AA6BE0553893F63E525447DC5745BB9650CE69A PK7=E4767D540A9E9531BDD3FB2302806A953E6920B15B8AE41C4D471B91422510A8 PK9=A5F56F9B07BD524BE2BFFD2C9AA3D80D070A5A5010BEF863F6C64BFA282B76F9 PK10=0DC5A3E6CF63DD71744F1854A6CBF64C13CE4358AE3C2EBE959C8C3B3F6B79B2 PKA0=3F3B86299E4598147DD1A9A8D314081FE8EE67DDFBAE20 PKA1=2D85350A3BC10ED683101EBBCAC799A5D1B87F6C32A833 PKA2=45DE1F88B189E2D453FEAEA559F02157A21F3DB92C7826 PKA3=B7C26B663BDDE355D1B516B7CE9F0D41A82A61FDC7A6B6 PKA4=6CB6896E6D2C61B33817C2927B032EC7FBE01D0B8BC75E