Editing Per Console Keys
Jump to navigation
Jump to search
The edit can be undone. Please check the comparison below to verify that this is what you want to do, and then publish the changes below to finish undoing the edit.
Latest revision | Your text | ||
Line 13: | Line 13: | ||
When metldr is encrypted at factory, a special keyset is set in the binary before encryption. Later when an isolated loader is loaded by metldr, it will copy the keyset to LS offset 0x00000. It consists of eid_root_key and eid_root_iv. To not having to use the same key for all eEID parts, several subkeys are generated from special data called individual information seed. These seeds are stored in the metadata header of isolated modules loaded by isoldr. When isoldr will load a module, it will call a subroutine that encrypts each seed chunk (0x40 bytes) using eid_root_key and eid_root_iv. Then the so-called individual infos are passed in registers r7 to r22 (= 0x100 bytes in total) to the loaded module where they are used further. Usually isolated modules have a seed section of 0x100 bytes but all of them (except sb_iso_spu_module) have all zeroes but the first 0x40 bytes chunk. You can, for example, find the recently published EID0 seed in the metadata section of aim_spu_module. Appliance info manager is used to get e.g. the target ID or the PSID from EID0. This explains why the seed can also be found in isoldr directly, since that one is checking EID0 too. | When metldr is encrypted at factory, a special keyset is set in the binary before encryption. Later when an isolated loader is loaded by metldr, it will copy the keyset to LS offset 0x00000. It consists of eid_root_key and eid_root_iv. To not having to use the same key for all eEID parts, several subkeys are generated from special data called individual information seed. These seeds are stored in the metadata header of isolated modules loaded by isoldr. When isoldr will load a module, it will call a subroutine that encrypts each seed chunk (0x40 bytes) using eid_root_key and eid_root_iv. Then the so-called individual infos are passed in registers r7 to r22 (= 0x100 bytes in total) to the loaded module where they are used further. Usually isolated modules have a seed section of 0x100 bytes but all of them (except sb_iso_spu_module) have all zeroes but the first 0x40 bytes chunk. You can, for example, find the recently published EID0 seed in the metadata section of aim_spu_module. Appliance info manager is used to get e.g. the target ID or the PSID from EID0. This explains why the seed can also be found in isoldr directly, since that one is checking EID0 too. | ||
As you can probably think, a fair amount of reversing time and knowledge has gone into finding this, so stop calling us *swearwords* for not releasing information that could potentially lead to more piracy, because we think that this would do more harm to the “scene” than just keeping some information in private (for now). Also I can only encourage everyone that thinks about us this way or is greedy demanding for developers/reverse engineers to release their stuff, to fire up isoldr in IDA or disassemble it with objdump and try to reverse all this from start to end. We’ll see, who is able to pull this through on | As you can probably think, a fair amount of reversing time and knowledge has gone into finding this, so stop calling us *swearwords* for not releasing information that could potentially lead to more piracy, because we think that this would do more harm to the “scene” than just keeping some information in private (for now). Also I can only encourage everyone that thinks about us this way or is greedy demanding for developers/reverse engineers to release their stuff, to fire up isoldr in IDA or disassemble it with objdump and try to reverse all this from start to end. We’ll see, who is able to pull this through on his own… | ||
Source: http://nwert.wordpress.com/2012/07/11/eeid-cryptography/ | Source: http://nwert.wordpress.com/2012/07/11/eeid-cryptography/ |