Editing Hypervisor Reverse Engineering

Jump to navigation Jump to search
Warning: You are not logged in. Your IP address will be publicly visible if you make any edits. If you log in or create an account, your edits will be attributed to your username, along with other benefits.

The edit can be undone. Please check the comparison below to verify that this is what you want to do, and then publish the changes below to finish undoing the edit.

Latest revision Your text
Line 1: Line 1:
<span style="background:red; color:#ffffff;">Warning, this page is way too long and is voted to be split into seperate sections</span>
[[Category:Software]]
<span style="background:red; color:#ffffff;">Warning, this page way too long and voted to be split into seperate sections</span>


----
----
Line 19: Line 20:
LPAR = Logical Partition  
LPAR = Logical Partition  


lpar1 starts at 0x&lt;unknown&gt;, and it's believed to be the memory space where lv1 stores its variables, flags and other data.  
lpar1 starts at 0x&lt;unknown&gt;, and its believed to be the memory space where lv1 stores its variables, flags and other data.  


lpar2 starts at 0x80000000000 and it's believed to be the memory space where lv2 stores its variables, flags and other data.  
lpar2 starts at 0x80000000000 and it's belived to be the memory space where lv2 stores its variables, flags and other data.  


<br>
<br>
Line 180: Line 181:
There are 2 system call tables in HV. The first one stores system calls 0 - 36. The second one stores system calls 0x10000 - 0x100FF.  
There are 2 system call tables in HV. The first one stores system calls 0 - 36. The second one stores system calls 0x10000 - 0x100FF.  


== UX System call table 0 - 36  ==
== System call table 0 - 36  ==


0x0035FAE8 (3.15)  
0x0035FAE8 (3.15)  
Line 187: Line 188:


=== System call numbers  ===
=== System call numbers  ===
0x0 - void eosh(void) //end_of_signal_handling(void)


0x1 - pid_t getpid(void)  
0x1 - getpid(void)  


0x2 - pid_t getppid(void)  
0x2 - getppid(void)  


0x3 - pid_t fork(void)  
0x3 - fork(void)  


0x4 - void exit(int status)
0x4 - exit  


0x5 - void execv(const char *path, char *const argv[])  
0x5 - exec(filename)  


0x6 - void wait(int *status)  
0x6 - wait(status)  


0x7 - int open(const char *path, int flags)  
0x7 - open(filename)  


0x8 - void close(int fd)  
0x8 - close(fd)  


0x9 - ssize_t read(int fd, void *buf, unsigned int nbyte)
0x9 - read  


0xA - ssize_t write(int fd, const void *buf, unsigned int nbyte)
0xA - write  


0xB - void lseek(int fd, long offset, int whence)
0xB - seek


0xC - unlink(const char *path)  
0xC - unlink(filename)  


0xD - void signal(int sig, void *func(int sig))
0xD - signal  


0xE - int kill(int pid, int signal_type)  
0xE - kill(pid, signal type)  


0xF - int brk(void *)
0xF - brk  


0x10 - int socket(int af, int type, int protocol) (supports only address family 0x1F, type 0x0 and protocol 0x0)  
0x10 - socket(af, type, protocol) (supports only address family 0x1F, type 0x0 and protocol 0x0)  


0x11 - int bind(int sockfd , const sockaddr *addr, unsigned int addrlen)
0x11 - bind  


0x12 - int listen(int sockfd, int backlog)  
0x12 - listen(fd, backlog)  


0x13 - int accept(int sockfd, sockaddr *addr, unsigned int *addrlen)
0x13 - accept  


0x14 - int connect(int sockfd, const sockaddr *serv_addr, unsigned int addrlen)
0x14 - connect  


0x15 - void putchar(int c)
0x15 -&nbsp;?


0x16 - int pause(void)  
0x16 - pause(void)  


0x17 - int sleep(unsigned int seconds)  
0x17 - sleep(seconds)  


0x18 - int mmap(void *addr, unsigned long size, int prot, int flags, int fd, long offset, void *mapped_addr)  
0x18 - mmap(addr, size, prot, flags, fd, offset)  


0x19 - int munmap (void *addr, unsigned long size)
0x19 - munmap  


0x1A - int chdir(const char *path)
0x1A - some fs func for directories, perhaps readdir


0x1B - void getchar(char *c)
0x1B -&nbsp;?


0x1C - map_pages(...) (used for alloc)  
0x1C - map_pages (used for alloc)  


0x1D - unmap_pages(...) (used for free)  
0x1D - unmap_pages (used for free)  


0x1E - select(...)
0x1E - select  


0x1F - getcwd(...)
0x1F - getcwd  


0x20 - Not used
0x20 -&nbsp;?


0x21 - alarm(...)
0x21 - alarm  


0x22 - ioctl(...)
0x22 - ioctl  


0x23 - pme_memalign(...)
0x23 - _map_pages


0x24 - ?
0x24 - _unmap_pages


== PMI System call table 0x10000 - 0x100FF  ==
== System call table 0x10000 - 0x100FF  ==


0x0035DE78 (3.15)  
0x0035DE78 (3.15)  
Line 269: Line 269:
=== System call numbers  ===
=== System call numbers  ===


0x10000 - allocate_memory(LPAR id, size, log2 of page size,&nbsp;?,&nbsp;?) / construct_memory_segment
0x10000 - allocate_memory_region(LPAR id, size, log2 of page size,&nbsp;?,&nbsp;?)  


0x10001 - query_logical_partition_address_region_info
0x10001 - lpar_query_address_region_info


0x10002 - translate_logical_partition_to_physical_address(LPAR id, LPAR address, physical addr)  
0x10002 - lpar_memory_addr_to_phys_addr(LPAR id, LPAR address, physical addr)  
 
0x10003 - map_physical_address_region
 
0x10004 - unmap_physical_address_region


0x10005 - construct_logical_pu  
0x10005 - construct_logical_pu  
0x10006 - destruct_logical_pu


0x10007 - activate_logical_pu(LPAR id, PPE id)  
0x10007 - activate_logical_pu(LPAR id, PPE id)  


0x10009 - construct_logical_partition(0, LPAR id, outlet)  
0x10009 - construct_logical_partition(0, LPAR id, outlet)  
0x1000A - get_logical_console_info
0x1000B - get_remote_file_size
0x1000C - read_remote_file
0x1000D - write_remote_file


0x1000E - release_memory_region(LPAR id, memory region address)  
0x1000E - release_memory_region(LPAR id, memory region address)  


0x1001A - construct_event_receive_port  
0x1001A - construct_event_receive_port  
0x1001B - destruct_event_receive_port
0x1001C - request_to_connect_event_ports
0x1001D - connect_event_ports
0x1001E - destruct_event_send_port
0x1001F - send_event_externally
0x10020 - get_status_of_event_send_port
0x10021 - get_event_port_connection_request
0x10022 - end_of_control_signal_processing


0x10024 - shutdown_logical_partition(LPAR id, shutdown command)  
0x10024 - shutdown_logical_partition(LPAR id, shutdown command)  
Line 320: Line 290:


0x10026 - get_logical_partition_info  
0x10026 - get_logical_partition_info  
0x10027 - read_privilege_set
0x10028 - modify_privilege_set
0x10029 - get_remote_file_size_long_name
0x1002A - read_remote_file_long_name
0x1002B - write_remote_file_long_name


0x1002C - construct_scheduling_table  
0x1002C - construct_scheduling_table  
Line 335: Line 295:
0x1002D - set_scheduling_slot  
0x1002D - set_scheduling_slot  


0x1002E - load_scheduling_table
0x1002E - ?
 
0x10032 - poweroff


0x10033 - get_remote_file_name
0x10032 - accesses system console


0x10034 - allocate_cp_channel
0x10034 - ?


0x10035 - release_cp_channel
0x10035 - ?


0x10036 - power_down
0x10036 - accesses system console


0x10037 - ?
0x10037 - ?
Line 353: Line 311:
0x10039 - ?
0x10039 - ?


0x10040 - construct_spe_type_1(SPE id, shaddow_addr) / construct_logical_spu
0x10040 - construct_spe_type_1(SPE id, shaddow_addr)  


0x10041 - destruct_spe(SPE id) / destruct_logical_spu
0x10041 - destruct_spe(SPE id)  


0x10042 - decrypt_lv2_self(spe id, LPAR auth id, SELF file image ptr, LPAR memory address)  
0x10042 - decrypt_lv2_self(spe id, LPAR auth id, SELF file image ptr, LPAR memory address)  
Line 363: Line 321:
0x10044 - disable_spe_execution  
0x10044 - disable_spe_execution  


0x10045 - read_spu_puint_mb(unsigned long spu_id, unsigned long msg)
0x10045 - set_spe_interrupt_mask
 
0x10046 - read_spe_problem_state_register(spe id, register offset, value) / read_spu_problem_state_area_register


0x10047 - write_spe_problem_state_register(spe id, register offset, value) / write_spu_problem_state_area_register
0x10046 - read_spe_problem_state_register(spe id, register offset, value)  


0x1004A - install_revoke_list
0x10047 - write_spe_problem_state_register(spe id, register offset, value)


0x1004B - disable_spe_loading  
0x1004B - disable_spe_loading  
0x1004C - install_access_control_table?
0x1004D - get_storage_status?
0x1004E - get_region_table_bits?
0x1004F - commit_region_update?
0x10050 - abort_region_update?
0x10051 - set_storage_tampered?


0x10053 - pmi_set_guest_os_mode  
0x10053 - pmi_set_guest_os_mode  


0x1007F - pause
0x10081 - accesses system console
 
0x10080 - get_total_execution_time
 
0x10081 - reset
 
0x10083 - construct_logical_rsx


0x10084 - construct_virtual_uart(LPAR id, VUART id, VUART data buffer size)  
0x10084 - construct_virtual_uart(LPAR id, VUART id, VUART data buffer size)  


0x10085 - destruct_virtual_uart(LPAR id, VUART id)  
0x10085 - destruct_virtual_uart(LPAR id, VUART id)  
0x10086 - establish_virtual_uart_channel


0x10088 - RSX_syscall_10088(LPAR id)  
0x10088 - RSX_syscall_10088(LPAR id)  
Line 415: Line 351:
0x100C2 - modify_repository_node_value(LPAR id)  
0x100C2 - modify_repository_node_value(LPAR id)  


0x100C3 - remove_repository_node(LPAR id)
0x100C3 - remove_repository_node_value(LPAR id)


= Process  =
= Process  =
Line 423: Line 359:
HV supports only 32 processes simultaneously. The number of processes currently running in HV is stored at address 0x0035EA54 (3.15) and 0x00357E3C (2.60).  
HV supports only 32 processes simultaneously. The number of processes currently running in HV is stored at address 0x0035EA54 (3.15) and 0x00357E3C (2.60).  


The process table is an array of 32 process table entries.
The process table is an array of 32 process table entries.  
 
0x0036C930 (4.30)
 
0x0036C8B0 (4.21)
 
0x00365458 (4.11)


0x0035F8D0 (3.55)
0x0035F8D0 (3.55)
Line 570: Line 500:
*0x000A9870 (PID 6)  
*0x000A9870 (PID 6)  
*0x00084B80 (PID 9)
*0x00084B80 (PID 9)
In JIG 2.43:
*(PID3) <- ss_server3
*(PID4) <- ss_sc_init_pu
*(PID5) <- ss_server2
*(PID6) <- ss_server1
*(PID7) <- factory_data_mngr_server
*(PID8) <- updater_frontend
(see [http://pastie.org/pastes/9407461/text?key=f6bk5lof0g4bgeu6xrn5ua this])


= PThread  =
= PThread  =
Line 671: Line 591:
== Member variables  ==
== Member variables  ==


offset 0x0 - pointer to previous AddressProtectionDomain object  
offset 0x8 - pointer to previous AddressProtectionDomain object  


offset 0x8 - pointer to next AddressProtectionDomain object  
offset 0x10 - pointer to next AddressProtectionDomain object  


offset 0x10 - poiinter to pointer to SLB entries  
offset 0x18 - poiinter to pointer to SLB entries  


offset 0x18 - pointer to AddressSpace object that owns this object  
offset 0x20 - pointer to AddressSpace object that owns this object  


offset 0x2A - pointer to previous ProtectionPage  
offset 0x34 - pointer to previous ProtectionPage  


offset 0x34 - pointer to next ProtectionPage  
offset 0x3C - pointer to next ProtectionPage  


offset 0x40 - Mutex object
offset 0x48 - Mutex object  


= ProtectionPage  =
= ProtectionPage  =
Line 840: Line 760:
=== vtable  ===
=== vtable  ===


0x003569F8 (3.15)
0x003569F8 (3.15)  


== IOIF device file objects  ==
== IOIF device file objects  ==
Line 1,026: Line 946:
=== vtable  ===
=== vtable  ===


0x352308 (3.15)
0x000x352308 (3.15)  


=== Member variables  ===
=== Member variables  ===
Line 1,705: Line 1,625:


*Before a storage region is accessed, HV checks access rights of the caller.  
*Before a storage region is accessed, HV checks access rights of the caller.  
*Repository node '''ss.laid''' ([[Authority ID|LPAR Authority ID]]) is evaluated for this purpose.  
*Repository node '''ss.laid''' (LPAR authentication id) is evaluated for this purpose.  
*If LPAR has a repository node '''ios.ata.region0.access''' (value doesn't matter) then the access rights check never fails. After System Manager sets ATA keys it removes this repository node from LPAR 1. If we add this repository node again or patch System Manager so it's not removed then we will be able to access all storage regions of all storage devices.
*If LPAR has a repository node '''ios.ata.region0.access''' (value doesn't matter) then the access rights check never fails. After System Manager sets ATA keys it removes this repository node from LPAR 1. If we add this repository node again or patch System Manager so it's not removed then we will be able to access all storage regions of all storage devices.
*'''ALL storage accesses from LPAR 1 are allowed'''  
*'''ALL storage accesses from LPAR 1 are allowed'''  
Line 1,758: Line 1,678:


*The storage subsystem is a storage device itself.  
*The storage subsystem is a storage device itself.  
*It's a pseudo device used to notify a LPAR when storage devices become e.g. ready.  
*It's a psuedo device used to notify a LPAR when storage devices become e.g. ready.  
*Linux implements a loop and reads from this device and process notifications (adds new devices dynamically).
*Linux implements a loop and reads from this device and process notifications (adds new devices dynamically).


Line 1,836: Line 1,756:


*The commands can be used with HV call '''lv1_storage_send_device_command'''.  
*The commands can be used with HV call '''lv1_storage_send_device_command'''.  
*However, before a command is executed HV does bit manipulation with it and checks it against the value of repository node '''ss.laid''' or also called '''[[Authority ID|LPAR Authority ID]]'''. If this test fails then the command is NOT executed.
*However, before a command is executed HV does bit manipulation with it and checks it against the value of repository node '''ss.laid''' or also called '''LPAR authentication ID'''. If this test fails then the command is NOT executed.


{| class="wikitable FCK__ShowTableBorders"
{| class="wikitable FCK__ShowTableBorders"
Line 2,089: Line 2,009:


*The commands can be used with HV call '''lv1_storage_send_device_command'''.  
*The commands can be used with HV call '''lv1_storage_send_device_command'''.  
*However, before a command is executed HV does bit manipulation with it and checks it against the value of repository node '''ss.laid''' or also called '''[[Authority ID|LPAR Authority ID]]'''. If this test fails then the command is NOT executed.
*However, before a command is executed HV does bit manipulation with it and checks it against the value of repository node '''ss.laid''' or also called '''LPAR authentication ID'''. If this test fails then the command is NOT executed.


{| class="wikitable FCK__ShowTableBorders"
{| class="wikitable FCK__ShowTableBorders"
Line 2,689: Line 2,609:


*The commands can be used with HV call '''lv1_storage_send_device_command'''.  
*The commands can be used with HV call '''lv1_storage_send_device_command'''.  
*However, before a command is executed HV does bit manipulation with it and checks it against the value of repository node '''ss.laid''' or also called '''[[Authority ID|LPAR Authority ID]]'''. If this test fails then the command is NOT executed.
*However, before a command is executed HV does bit manipulation with it and checks it against the value of repository node '''ss.laid''' or also called '''LPAR authentication ID'''. If this test fails then the command is NOT executed.


{| class="wikitable FCK__ShowTableBorders"
{| class="wikitable FCK__ShowTableBorders"
Line 2,742: Line 2,662:
block size = 512  
block size = 512  


*It's a pseudo device.  
*It's a psuedo device.  
*'''This storage device redirects all requests to the region 1 of HDD storage device&nbsp;!!!'''
*'''This storage device redirects all requests to the region 1 of HDD storage device&nbsp;!!!'''


Line 3,475: Line 3,395:
! Address of Data in HV Dump  
! Address of Data in HV Dump  
! Size of Data
! Size of Data
! Entry Id
|-
|-
| 0  
| 0  
| lv1ldr
| -
| 0x0C150000  
| 0x0C150000  
| 0x1E5CC
| 0x1E5CC
| 0x01
|-
|-
| 1  
| 1  
Line 3,487: Line 3,405:
| 0x00011000  
| 0x00011000  
| 0xE8D0
| 0xE8D0
| 0x00
|-
|-
| 2  
| 2  
Line 3,493: Line 3,410:
| 0x00020000  
| 0x00020000  
| 0x16DA0
| 0x16DA0
| 0x02
|-
|-
| 3  
| 3  
Line 3,499: Line 3,415:
| 0x00055000  
| 0x00055000  
| 0x12E44
| 0x12E44
| 0x04
|-
|-
| 4  
| 4  
Line 3,505: Line 3,420:
| 0x00037000  
| 0x00037000  
| 0x1DAE4
| 0x1DAE4
| 0x03
|-
|-
| 5  
| 5  
Line 3,511: Line 3,425:
| 0x00068000  
| 0x00068000  
| 0x860
| 0x860
| 0x0C
|-
|-
| 6  
| 6  
| QA Flag
| -
| 0x00069010  
| 0x00069010  
| 0x8
| 0x8
| 0x0F
|-
|-
| 7  
| 7  
| QA Flag Token
| -
| 0x00069020  
| 0x00069020  
| 0x50
| 0x50
| 0x10
|-
|-
| 8  
| 8  
| Trace Level
| -
| 0x00069070  
| 0x00069070  
| 0x8
| 0x8
| 0x11
|}
|}


Line 3,593: Line 3,503:
=== appldr  ===
=== appldr  ===


*'''appldr''' is used for decryption of SELFs or EDATs
*'''appldr''' is used for decryption of SELFs  
*HV call '''lv1_authenticate_program_segment''' loads '''appldr'''
*HV call '''lv1_authenticate_program_segment''' loads '''appldr'''


Line 3,602: Line 3,512:
==== Loading appldr  ====
==== Loading appldr  ====


*64 bit memory address of '''appldr''' is written into 32 bit SPU register '''SPU_In_Mbox'''  
*64 bit memory address of '''isoldr''' is written into 32 bit SPU register '''SPU_In_Mbox'''  
*'''metldr''' is loaded
*'''metldr''' is loaded


Line 3,989: Line 3,899:
offset 0x90 - LPAR image path  
offset 0x90 - LPAR image path  


offset 0x1C0 - LPAR ability (8 bytes)
offset 0x1C0 - LPAR ability (8 bytes)  


=== Types of System Manager  ===
=== Types of System Manager  ===
Line 4,449: Line 4,359:
| 0xA  
| 0xA  
| 0x1B6  
| 0x1B6  
| Makes a triple beep
| Makes a double beep
|-
|-
| 0x29  
| 0x29  
Line 4,461: Line 4,371:
| Makes a continuous beep
| Makes a continuous beep
|}
|}
field 1 seems relative to beep tone, as 0x25 sounds different


=== Active System Managers in HV dump 3.15  ===
=== Active System Managers in HV dump 3.15  ===
Line 4,656: Line 4,565:
| 0x8000  
| 0x8000  
| 8  
| 8  
| 0x8001 - 0x8005
|  
| [[Updater_Frontend|Updater Frontend]]
|  
|-
|-
| 0x9000  
| 0x9000  
Line 4,666: Line 4,575:
| 0x10000  
| 0x10000  
| 0x23  
| 0x23  
| 0x10001-0x10007
| -  
| [[SB_Manager|SBM (South Bridge Manager)]]
| -
|-
|-
| 0x11000  
| 0x11000  
Line 4,702: Line 4,611:
| 0x16  
| 0x16  
| 0x22001 - 0x22004
| 0x22001 - 0x22004
| [[Factory_Data_Manager|Factory Data Manager]]
|  
|-
|-
| 0x24000  
| 0x24000  
Line 4,740: Line 4,649:
     uint32_t retval;
     uint32_t retval;
     uint8_t res[4];
     uint8_t res[4];
     uint64_t laid;            /* LPAR Authority ID */
     uint64_t laid;            /* LPAR authority id */
     uint64_t paid;            /* Program Authority ID */
     uint64_t paid;            /* Program authority id */
}
}
</pre>
</pre>
Line 4,772: Line 4,681:
*The size of the body depends on a used service.
*The size of the body depends on a used service.


= LPAR Memory Management =
== 0x15000 - SPL (Secure Profile Loader) ==


== Memory Region class  ==
*DEFAULT.SPP file is stored on '''/dev/rflash1'''


This class is the base class for different memory region types.
{| class="wikitable FCK__ShowTableBorders"
|-
! Packet ID
! Description
|-
| 0x15001
| Get LPAR Parameter Size/Get LPAR Parameter
|-
| 0x15003
| Get Contents Size/Get Contents
|-
| 0x15009
| Get Component
|}


=== vtable ===
=== SPP File ===


0x003578B0 (3.15)
*The file is encrypted but can be read by using 0x15003 service of SPL
*SPL reads SPP file, parses SPP header and checks some fields
*SPP file is verified and decrypted by SPU module '''spp_verifier.self''' that cab be executed with HV SPE calls
*Even old default.spp from PS3 Firmware 1.10 can be decrypted with spp_verifier.self from PS3 Firmware 3.41
*Header format version should be '''5''' or else the header check fails
*If (SPP header size&nbsp;% 256&nbsp;!= 0) then header check fails
*'''Finally i was able to decrypt profile file from 3.41 but by using SPE HV calls only&nbsp;!!! And Linux Manager is still there&nbsp;!!!'''
*The decrypted file is a binary file


=== Member variables  ===
Here are the contents of [[Default.spp#3.56_RETAIL.2FCEX]] from 3.55. <br />
Here are the contents of [[Default.spp#3.55_RETAIL.2FCEX]] from 3.55. <br />
Here are the contents of [[Default.spp#3.41_RETAIL.2FCEX]] from 3.41. <br />
Here are the contents of [[Default.spp#3.15_RETAIL.2FCEX]] from 3.15. <br />
Here are the contents of [[Default.spp#1.00_DEBUG.2FDEX]] from 1.00 Debug Firmware. <br />


offset 0x40 - pointer to LPAR object that owns this memory region
==== SPP Header  ====


offset 0x48 - type of memory region (8 bytes)  
offset 0x2 - header format version (2 bytes)  


offset 0x50 - LPAR start address of memory region
offset 0x4 - header size (4 bytes)


offset 0x58 - size of memory region (8 bytes)  
offset 0x18 - number of segments (4 bytes)  


offset 0x60 - flags (8 bytes)
==== Segments  ====


offset 0xA0 - log2 of page size
*Segments follow after the header
*SPP file contains several segments.


=== Generating New LPAR Memory Region Addresses ===
Here is the list of profile segments from 3.41:


generate_new_lpar_mem_region_address(?, memory region size, log2(page size), ?, ?) - 002C82E8 (3.15)
{| class="wikitable FCK__ShowTableBorders"
|-
! Name
! auth id/authority id
|-
|*SCE_CELLOS_PME               
|0x1070000001000001
|-
|*PS3_LPAR                     
|0x1070000002000001
|-
|*PS2_LPAR                     
|0x1020000003000001
|-
|*PS2_GX_LPAR                   
|0x1020000003000001
|-
|*PS2_SW_LPAR                   
|0x1020000003000001
|-
|*LINUX_LPAR                   
|0x1080000004000001
|-
|*SCE_CELLOS_SYSTEM_MGR         
|0x107000001D000001
|-
|*SCE_CELLOS_SYSTEM_MGR_LINUX   
|0x107000001D000001
|-
|*SCE_CELLOS_SYSTEM_MGR_PS2     
|0x107000001D000001
|-
|*SCE_CELLOS_SYSTEM_MGR_PS2_SW 
|0x107000001D000001
|-
|*SCE_CELLOS_SYSTEM_MGR_PS2_GX 
|0x107000001D000001
|-
|*SCE_CELLOS_SS_SECURE_RTC     
|0x1070000033000001
|-
|*SCE_CELLOS_SS_INDI_INFO_EID
|
|-
|*SCE_CELLOS_SS_INIT_LV1_ACL   
|0x1070000017000001
|}


generate_new_lpar_mem_region_address - 002C6570 (3.41)
== 0x15003 - Get Contents Size/Get Contents  ==


*The function returns a new LPAR memory region address.
*This service provides the contents of a segment specified by a service requester
*This method is used e.g. in all HV calls which create any kind of memory regions, e.g. '''lv1_allocate_memory''', '''lv1_map_htab''', '''lv1_undocumented_function_114''', '''lv1_construct_logical_spe''', '''lv1_map_device_mmio_region''' or '''syscall 0x10040'''.
*I have got access to this service through DM but couldn't get through access policy yet, the service returns error code 0x00000005 that means '''Access Violation'''  
*But i still could test with this service which segment names are valid
*I need valid '''laid''' and '''paid''' to get through it


==== Encoding LPAR Memory Region Start Addresses and Sizes ====
== 0x17000 - Indi Info Manager  ==


*Size of LPAR memory region is encoded in the LPAR memory region start address.
{| class="wikitable FCK__ShowTableBorders"
*That is why e.g. the LPAR Memory Region Start Addresses of LPAR Memory Region of size 4096 byte begin with '''0x300000000000''', '''0x300000000000 >> 42 = 0xC = log2(4096)'''.
|-
*Each LPAR has a counter (8 bytes) which is incremented by 1 every time a new LPAR Memory Region is created.
! Packet ID
*Before incrementing, the counter is shifted left by '''log2(LPAR Memory Region Size)''' and ored with '''log2(LPAR Memory Region Size) << 42'''.
! Description
|-
| 0x17001
| Read EID Data Size By Index/Read metldr Size
|-
| 0x17002
| Read EID Data By Index/Read metldr
|-
| 0x17003
| Read ID Data
|-
| 0x17004
| Read System Data
|-
| 0x17005
| Write System Data?
|-
| 0x17006
| Write smth?
|-
| 0x17007
| Read System Data From EEPROM
|-
| 0x17008
| not implemented
|-
| 0x17009
| unknown
|-
| 0x1700A
| not implemented
|-
| 0x1700B
| not implemented
|-
| 0x1700C
| not implemented
|-
| 0x1700D
| not implemented
|-
| 0x1700E
| not implemented
|-
| 0x1700F
| not implemented
|-
| 0x17010
| unknown
|-
| 0x17011
| unknown
|-
| 0x17012
| unknown
|-
| 0x17013
| Read eEID Size
|-
| 0x17014
| Write eEID/Write metldr
|-
| 0x17015
| Read cISD Size
|-
| 0x17016
| Read cISD
|-
| 0x17017
| Write cISD
|}


LPAR Memory Region Start Address >> 42 = log2(LPAR Memory Region Size)
*Indi Info Manager is accessed e.g. in '''syscall 868''' on GameOS


  LPAR Memory Region Start Address = (log2(LPAR Memory Region Size) << 42) |
=== 0x17001 - Read EID Data Size By Index ===
    (counter << log2(LPAR Memory Region Size))


===== LPAR Memory Region Address Counter =====
*I have got access to this service through DM and tested it
*This service is used e.g. by Update Manager, User Token Manager or Storage Manager
*The service expects 2 additional parameters, each parameter is 8 bytes
*I tested it with values: 0x0, 0x4 and 0x1000 for the 1st parameter. I extracted this values from HV Processes which use this service
*The 2nd parameter is not used in a request but in a response. It contains EID size.


*LPAR Memory Region Address Counter is stored at address: '''0x38(LPAR ptr) + 0x9E8'''
{| class="wikitable FCK__ShowTableBorders"
*LPAR1's Memory Region Address Counter is at address '''0x00677A48''' in HV dump 3.15
|-
*LPAR2's Memory Region Address Counter is at address '''0x007632D8''' in HV dump 3.15
! Index
*LPAR1's Memory Region Address Counter is at address '''0x00677A48''' in HV dump 3.41
! Size Of Data
*LPAR2's Memory Region Address Counter is at address '''0x00161E68''' in HV dump 3.41
! Description
 
|-
== Physical Memory Region class  ==
| 0
 
| 0x860
This type of memory region is created e.g. in '''lv1_allocate_memory''' HV call or in '''syscall 0x10000'''.
| EID0
 
|-
=== vtable  ===
| 1
| 0x2A0
| EID1
|-
| 2
| 0x730
| EID2
|-
| 3  
| 0x100
| EID3
|-
| 4
| 0x030
| EID4
|-
| 5
| 0xA00
| EID5
|-
| 6
| 0x020
| cISD0
|-
| 7
| 0x200
| cISD1
|-
| 8
| 0x010
| cISD2
|-
| 9
| 0x030
| cCSD0
|-
| 0x1000
| 0xe960
| metldr - size is version dependand
|}


0x00357D08 (3.15)
=== 0x17002 - Read EID Data By Index  ===


=== Member variables  ===
*I have got access to this service through DM and tested it
*This service is used e.g. by Update Manager, User Token Manager or Storage Manager
*The service expects 2 additional parameters, each parameter is 8 bytes
*The 1st parameter is same as the 1st parameter of service '''Read EID Data Size By Index'''
*The 2nd parameter is '''EID Data Size''' that is returned by the service '''Read EID Data Size By Index'''
*The returned data is some binary data.
*The data returned by the service with 1st parameter set to 0x0 or 0x4 is from file '''eEID''' stored on FLASH storage device region 0.
*The data returned by the service with 1st parameter set to 0x1000 contains string '''metldr'''.
*E.g. EID0 data is passed by Update Manager to SPU module '''spu_token_processor.self''' when Update Manager loads and executes it with syscall '''0x10043'''.
*E.g. EID4 data is passed by Storage Manager to SPU module '''sb_iso_spu_module.self'''.


offset 0xB0 - pointer to object that stores a list of addresses of physical pages owned by this memory region
=== 0x17004 - Read System Data  ===


offset 0xB8 - pointer to LPAR object that owns this memory region
*Reads data from '''cISD''' or '''cCSD''' files stored on '''/dev/rflash1'''.
*E.g. Gelic MAC address is stored in file '''cISD'''.


offset 0xC0 - reference counter (8 bytes)
=== 0x17007 - Read System Data From EEPROM  ===


=== Objects  ===
*Reads data from SC EEPROM
*An index is passed to the service. The index is mapped to a specific SC EEPROM offset.


Here is the list of physical memory region objects i found in HV 3.15.
Here is the list of possible EEPROM offsets from HV 3.15:


{| class="wikitable FCK__ShowTableBorders"
{| class="wikitable FCK__ShowTableBorders"
|-
|-
! Address in HV dump
! Index
! LPAR id
! SC EEPROM Offset
! LPAR Start Address
! Size Of Data
! Size
|-
! Flags
| 0
! log2(Page Size)
| 0x48D20
! Physical Page Addresses
| 6
|-
|-
| 0x006B5510
| 1  
| 1  
| 0x300000001000
| 0x48D28
| 0x1000
| 6
| 0x0
| 0xC
| 0x672000
|-
|-
| 0x006B5E50
| 2
| 1
| 0x48D30
| 0x440000040000
| 6
| 0x20000
| 0x0
| 0x11
| 0x6C0000
|-
|-
| 0x006B6980
| 3
| 1
| 0x48D38
| 0x440000060000
| 6
| 0x20000
| 0x0
| 0x11
| 0x6E0000
|-
|-
| 0x006B7F00
| 4
| 1
| 0x48D00
| 0x400000040000
| 4
| 0x10000
| 0x0
| 0x10
| 0x100000
|-
|-
| 0x003A80F0
| 5
| 2
| 0x48D04
| 0x6C0058000000
| 4
| 0x7000000
| 0x4
| 0x18
| 0x1000000 - 0x7000000
|-
|-
| 0x003BE800
| 6
| 2
| 0x48D08
| 0x300000047000
| 4
| 0x1000
| 0x0
| 0xC
| 0x1FA000
|-
| 0x006BDAA0
| 2
| 0x0
| 0x8000000
| 0x8
| 0x1B (single huge page)
| 0x8000000
|}
|}


So, Linux kernel should be located at physical address 0x8000000 and Linux syscall handler at 0x8000C00. Too bad that the HV dump is not large enough.
=== 0x17014 - Write eEID/Write metldr  ===
 
*'''Holy crap, it writes passed data to the region of FLASH memory where eEID or metldr data is stored&nbsp;!!!'''
*'''And GameOS is allowed to use this service&nbsp;!!!'''
*'''Do not experiment with this service if you don't know what it does or else your PS3 will not work anymore&nbsp;!!!'''
 
=== 0x17015 - Read cISD Size  ===
 
*Returns size of data '''cISD''' that is stored on '''FLASH storage device region 0'''
 
=== 0x17016 - Read cISD  ===
 
*Returns data '''cISD''' that is stored on '''FLASH storage device region 0'''
 
=== 0x17017 - Write cISD  ===


=== GameOS Physical Memory Regions  ===
*'''Writes passed data to the region of FLASH memory where cISD data is stored&nbsp;!!!'''


*GameOS allocates nearly all physical memory of PS3 for itself&nbsp;!!! That is why new HV calls '''lv1_allocate_memory''' with large memory region sizes will fail.
== 0x18000 - DM (Dispatcher Manager)  ==
*So when someone wants a large piece of physical memory, he can borrow it from GameOS's LPAR memory region that starts at '''0x700020000000'''. It can be used for example to send update packages to Update Manager which are very large.


Here is the list of physical memory regions of GameOS i found in HV 3.41:
*Dispatcher Manager runs in Process 3.
*When SLL (Secure LPAR Loader) creates GamesOS LPAR and loads it, it also creates a VUART with port number '''10''' owned by GameOS using a service provided by Dispatcher Manager (0x18001 - Construct Service Port).
*Dispatcher Manager communicates with GameOS through this VUART. It opens the file '''/proc/partitions/&lt;LPAR id&gt;/vuart/10'''. When the file '''/proc/partitions/&lt;LPAR id&gt;/vuart/10''' is opened by Dispatcher Manager, the Hypervisor creates a peer VUART which is connected to the GameOS's VUART 10.
*After that Dispatcher Manager reads requests from this VUART sent by GameOS and dispatches these requests to services (functions) provided by Hypervisor Processes through sockets. '''Through VUART and Dispatcher Manager, the GameOS LPAR has access to all services provided by Hypervisor Processes.'''
*However, the services provided by Hypervisor Processes are protected by Security Policy Manager (SPM). Before Dispatcher Manager routes the requests from GameOS to these services, it consults SPM (by using 0x11001 service of SPM) and checks if the GameOS has access rights to the requested service. If not then the request is not routed.
*DM overwrites the LAID sent in SS packet header with the LAID of the LPAR that sent the request. So, no matter what LAID you send in SS packet header, it will be always overwritten with the correct one by DM. That is the reason why e.g. USB Dongle Master Key cannot be decrypted by GameOS without patching DM. But with HV access rights, DM can be easily patched and access to SYSCON can be gained.
*Linux LPAR doesn't have a VUART communication link to Dispatcher Manager.
*I tested VUART 10 on GameOS with PSGroove and it's there.  
*On GamesOS, '''_ss_multiplexer''' accesses DM (VUART 10)


{| class="wikitable FCK__ShowTableBorders"
{| class="wikitable FCK__ShowTableBorders"
|-
|-
! Start Address
! Packet ID
! Size
! Description
! Access Right
! Max Page Size
! Flags
! Real Addresses
|-
|-
| 0x0
| 0x18001
| 0x1000000
| Construct Service Port
| 0x3
| 0x18
| 0x8
| 0x1000000 - 0x1FFF000
|-
| 0x500000300000
| 0xA0000
| 0x3
| 0x10
| 0x8
| 0x380000 - 0x38F000, 0x3B0000 - 0x3BF000, 0x1E0000 - 0x1FF000, 0x3C0000 - 0x3FF000, 0xFF00000 - 0xFF1F000
|-
|-
| 0x700020000000
| 0x18002
| 0xE900000 (huge memory region)
| Destruct Service Port
| 0x3
| 0x14
| 0x0
| 0x400000 - 0x5FF000, 0x800000 - 0xFFF000, 0x2000000 - 0xFEFF000
|}
|}


== HTAB Memory Region class ==
=== Dispatcher Manager Messages ===


This memory region is created when a HTAB is mapped into LPAR's address space. It's created in '''lv1_map_htab''' HV call.
==== Dispatcher Manager Header  ====


=== vtable  ===
*Payload follows after header
 
*Payload is a SS packet
0x00357C98 (3.15)
<pre>struct dispmgr_header
 
{
=== Member variables ===
    uint32_t request_id;
 
    uint32_t function_id;
offset 0xB0 - pointer to VAS object that owns the HTAB
    uint32_t request_size;        /* payload size of request */
    uint32_t response_size;        /* payload size of response */
}
</pre>
=== Packet ID - SS ID Mapping ===


=== Objects  ===
*Before DM routes a received request to a service provider (HV Process) it consults SPM
*DM sends a request to SPM
*Request contains SS ID and Subject ID (laid and paid)
*DM obtains SS ID by mapping Packet ID


Here is the list of HTAB memory region objects i found in HV 3.15.
Here is the mapping table i extracted from HV Process 3 where SPM and DM run:


{| class="wikitable FCK__ShowTableBorders"
{| class="wikitable FCK__ShowTableBorders"
|-
|-
! Address in HV dump
! Packet ID
! LPAR id
! SS ID
! VAS id
|-
! LPAR Start Address
| 0x2001
! Size
| 0x34
! Flags
|-
! log2(Page Size)
| 0x2002
| 0x35
|-
| 0x2003
| 0x36
|-
| 0x2004
| 0x37
|-
| 0x2005
| 0x38
|-
| 0x2006
| 0x39
|-
|-
| 0x001FE0F0
| 0x200A
| 2
| 0x3D
| 3
| 0x500000C00000
| 0x100000
| 0xC000000000000000
| 0x14
|-
|-
| 0x003BD850
| 0x200B
| 2
| 0x3E
| 3
| 0x500004300000
| 0x100000
| 0xC000000000000000
| 0x14
|-
|-
| 0x003BDEA0
| 0x200C
| 2
| 0x3F
| 3
|-
| 0x500004500000
| 0x200D
| 0x100000
| 0x40
| 0xC000000000000000
|-
| 0x14
| 0x200E
| 0x41
|-
| 0x2012
| 0x7B
|-
| 0x2013
| 0x7C
|-
| 0x2014
| 0x7E
|-
| 0x2015
| 0x7F
|-
| 0x2016
| 0x7D
|-
| 0x2017
| 0x80
|}
 
== 0x25000 - User Token Manager  ==
 
{| class="wikitable FCK__ShowTableBorders"
|-
! Packet ID
! Description
|-
| 0x25001
| Encrypt User Token
|-
| 0x25002
| Decrypt User Token
|}
|}


=== GameOS HTAB ===
=== User Token ===
 
*Before User Token Manager encrypts a received user token it checks it's format.
*User Tokens are processed by '''spu_utoken_processor.self'''
*Before User Token is processed, User Token Manager reads IDPS by sending SS requests to Indi Info Manager (packet ids 0x17001 and 0x17002). Indi Info Manager runs in HV Process 5.
 
==== User Token Format  ====
<pre>stuct user_token_attr
{
    uint32_t type;                                /* 0x00000001, value&nbsp;!= 0x00000001 means attribute list ends here */
    uint32_t size;                                /* 8 + sizeof(data) */
    /* data follows here, size of data may be 0 */
}
 
struct user_token
{
    uint32_t magic;                                /* 0x73757400 = "sut\0" */
    uint32_t format_version;                      /* 0x00000001 */
    uint64_t size;
    uint8_t idps[16];
    uint64_t expire_date;
    uint64_t capability;
    union
    {
        stuct user_token_attr attrs[0];
        uint8_t dummy[3072];
    } attrs;
    /* 0xC30 */
    uint8_t digest[20];
}
</pre>
= LPAR Memory Management  =
 
== Memory Region class  ==
 
This class is the base class for different memory region types.


*HTAB of GameOS is already mapped into address space of GameOS so that is why HV call '''lv1_map_htab''' will fail until you unmap it with '''lv1_unmap_htab'''
=== vtable  ===
*Effective address of GameOS HTAB is '''0x800000000F000000'''
*Virtual address of GameOS HTAB is '''0xF000000'''
*Size of GameOS HTAB is '''0x40000'''
*GameOS HTAB supports large pages of size '''64K''' and '''1M'''
*GameOS HTAB can be easily dumped by reading 0x40000 bytes at EA 0x800000000F000000


=== GameOS SLB  ===
0x003578B0 (3.15)


Here is the dump of SLB entries from GameOS 3.41:
=== Member variables ===
<pre>0x8000000008000000  0x0000000000000500
 
0x8000000208000000  0x0000000000020500
offset 0x40 - pointer to LPAR object that owns this memory region
0x8000000300000000  0x0000000000030510
0x0000000000000000  0x0000000000000000
0x0000000080000000  0x0000000000038C00
0x00000000A0000000  0x000000000003AC00
0x00000000C0000000  0x000000000003CC00
0x0000000000000000  0x0000000000000000
0x0000000000000000  0x0000000000000000
0x0000000000000000  0x0000000000000000
0x0000000000000000  0x0000000000000000
0x0000000000000000  0x0000000000000000
0x0000000000000000  0x0000000000000000
0x0000000000000000  0x0000000000000000
0x0000000000000000  0x0000000000000000
0x0000000000000000  0x0000000000000000
0x0000000000000000  0x0000000000000000
0x0000000000000000  0x0000000000000000
0x0000000000000000  0x0000000000000000
0x0000000000000000  0x0000000000000000
0x0000000000000000  0x0000000000000000
0x0000000000000000  0x0000000000000000
0x0000000000000000  0x0000000000000000
0x0000000000000000  0x0000000000000000
0x0000000000000000  0x0000000000000000
0x0000000000000000  0x0000000000000000
0x0000000000000000  0x0000000000000000
0x0000000000000000  0x0000000000000000
0x0000000000000000  0x0000000000000000
0x0000000000000000  0x0000000000000000
0x0000000000000000  0x0000000000000000
0x0000000000000000  0x0000000000000000
0x8000000010057960  0x8000000000313E78
0x8000000010057940  0x0000000000000000
0x800000000001B698  0x0000000000000000
0x8000000010057930  0x8000000000490708
0x80000000002B6C68  0x80000000003DE928
0x8000000010057EC0  0x80000000003DE920
0x0000000000000000  0x8000000000309810
0x80000000004B3000  0x0000000000000000
0x8000000010057CC0  0x0000000000000000
0x80000000004AF000  0x80000000004E1F00
0x80000000100579C8  0x80000000100579C0
0x80000000100579E0  0x2400002200000000
0x80000000004CF5B0  0x8000000200012000
0x80000000100579F8  0x80000000100579F0
0x8000000010057A10  0x80000000004A3A00
0x80000000004CF5B0  0x80000000004C8D00
0x800000000001BF6C  0x80000000004CD400
0x800000000001B698  0x80000000004C8100
0x80000000100579D0  0x80000000004B48C0
0x0000000000001C08  0x0000000000000000
0x8000000010057A78  0x8000000010057A70
0x8000000010057A90  0x0000000000000000
0x80000000004CF90C  0x0000000000000000
0x0000000000000000  0x8000000010057A80
0x8000000010057A90  0x8000000000309810
0x80000000004CF62C  0x0000000000000000
0x8000000010057CC0  0x0000000000000000
0x80000000004AF000  0x80000000004B48C0
0x00004000001C0000  0x0000000000000001
0x00000000D0000000  0x0000A8E3EE7D10DA
0x0000000000000000  0x0000000000000000
0x80000000004D8088  0x80000000004D9000
</pre>
== SPE MMIO Memory Region class ==


This type of memory region represents MMIO memory region of a SPE. It's created e.g. in '''lv1_construct_logical_spe''' or in '''syscall 0x10040'''.
offset 0x48 - type of memory region (8 bytes)


=== vtable  ===
offset 0x50 - LPAR start address of memory region


0x003583F8 (3.15)  
offset 0x58 - size of memory region (8 bytes)  


=== Member variables  ===
offset 0x60 - flags (8 bytes)


=== Objects  ===
offset 0xA0 - log2 of page size


Here is the list of SPE memory region objects i found in HV 3.15.
=== Generating New LPAR Memory Region Addresses ===


{| class="wikitable FCK__ShowTableBorders"
generate_new_lpar_mem_region_address(?, memory region size, log2(page size), ?, ?) - 002C82E8 (3.15)
 
generate_new_lpar_mem_region_address - 002C6570 (3.41)
 
*The function returns a new LPAR memory region address.
*This method is used e.g. in all HV calls which create any kind of memory regions, e.g. '''lv1_allocate_memory''', '''lv1_map_htab''', '''lv1_undocumented_function_114''', '''lv1_construct_logical_spe''', '''lv1_map_device_mmio_region''' or '''syscall 0x10040'''.
 
==== Encoding LPAR Memory Region Start Addresses and Sizes ====
 
*Size of LPAR memory region is encoded in the LPAR memory region start address.
*That is why e.g. the LPAR Memory Region Start Addresses of LPAR Memory Region of size 4096 byte begin with '''0x300000000000''', '''0x300000000000 >> 42 = 0xC = log2(4096)'''.
*Each LPAR has a counter (8 bytes) which is incremented by 1 every time a new LPAR Memory Region is created.
*Before incrementing, the counter is shifted left by '''log2(LPAR Memory Region Size)''' and ored with '''log2(LPAR Memory Region Size) << 42'''.
 
LPAR Memory Region Start Address >> 42 = log2(LPAR Memory Region Size)
 
LPAR Memory Region Start Address = (log2(LPAR Memory Region Size) << 42) |
    (counter << log2(LPAR Memory Region Size))
 
===== LPAR Memory Region Address Counter =====
 
*LPAR Memory Region Address Counter is stored at address: '''0x38(LPAR ptr) + 0x9E8'''
*LPAR1's Memory Region Address Counter is at address '''0x00677A48''' in HV dump 3.15
*LPAR2's Memory Region Address Counter is at address '''0x007632D8''' in HV dump 3.15
*LPAR1's Memory Region Address Counter is at address '''0x00677A48''' in HV dump 3.41
*LPAR2's Memory Region Address Counter is at address '''0x00161E68''' in HV dump 3.41
 
== Physical Memory Region class  ==
 
This type of memory region is created e.g. in '''lv1_allocate_memory''' HV call or in '''syscall 0x10000'''.
 
=== vtable  ===
 
0x00357D08 (3.15)
 
=== Member variables  ===
 
offset 0xB0 - pointer to object that stores a list of addresses of physical pages owned by this memory region
 
offset 0xB8 - pointer to LPAR object that owns this memory region
 
offset 0xC0 - reference counter (8 bytes)
 
=== Objects  ===
 
Here is the list of physical memory region objects i found in HV 3.15.
 
{| class="wikitable FCK__ShowTableBorders"
|-
|-
! Address in HV dump  
! Address in HV dump  
! LPAR id  
! LPAR id  
! SPE
! LPAR Start Address  
! LPAR Start Address  
! Size  
! Size  
! Physical Address
! Flags  
! Flags  
! log2(Page Size)
! log2(Page Size)  
! Physical Page Addresses
|-
|-
| 0x003ABC20
| 0x006B5510
| 2
| 1  
| 1  
| 0x4C0000880000
| 0x300000001000
| 0x80000
| 0x1000
| 0x20000080000
| 0x0
| 0xA000000000000000
| 0xC
| 0xC
| 0x672000
|-
| 0x006B5E50
| 1
| 0x440000040000
| 0x20000
| 0x0
| 0x11
| 0x6C0000
|-
| 0x006B6980
| 1
| 0x440000060000
| 0x20000
| 0x0
| 0x11
| 0x6E0000
|-
|-
| 0x003AAD70
| 0x006B7F00
| 2
| 1
| 2
| 0x400000040000
| 0x4C0000980000
| 0x10000
| 0x80000
| 0x0
| 0x20000100000
| 0x10
| 0xA000000000000000
| 0x100000
| 0xC
|-
|-
| 0x003A8880
| 0x003A80F0
| 2  
| 2  
| 3
| 0x6C0058000000
| 0x4C0000780000
| 0x7000000
| 0x80000
| 0x4
| 0x20000180000
| 0x18
| 0xA000000000000000
| 0x1000000 - 0x7000000
| 0xC
|-
|-
| 0x003B4F70
| 0x003BE800
| 2  
| 2  
| 4
| 0x300000047000
| 0x4C0000A80000
| 0x1000
| 0x80000
| 0x0
| 0x20000200000
| 0xC
| 0xA000000000000000
| 0x1FA000
| 0xC
|-
|-
| 0x003AB700
| 0x006BDAA0
| 2  
| 2  
| 5
| 0x0
| 0x4C0000680000
| 0x8000000
| 0x80000
| 0x8
| 0x20000280000
| 0x1B (single huge page)
| 0xA000000000000000
| 0x8000000
| 0xC
|-
| 0x003B5BE0
| 2
| 6
| 0x4C0000B80000
| 0x80000
| 0x20000300000
| 0xA000000000000000
| 0xC
|}
|}


== SPE Shadow Registers Memory Region class  ==
So, Linux kernel should be located at physical address 0x8000000 and Linux syscall handler at 0x8000C00. Too bad that the HV dump is not large enough.


This type of memory region represents shadow registers memory region of a SPE. It's created e.g. in '''lv1_construct_logical_spe''' or in '''syscall 0x10040'''.
=== GameOS Physical Memory Regions  ===


=== vtable  ===
*GameOS allocates nearly all physical memory of PS3 for itself&nbsp;!!! That is why new HV calls '''lv1_allocate_memory''' with large memory region sizes will fail.
*So when someone wants a large piece of physical memory, he can borrow it from GameOS's LPAR memory region that starts at '''0x700020000000'''. It can be used for example to send update packages to Update Manager which are very large.


0x00358448 (3.15)
Here is the list of physical memory regions of GameOS i found in HV 3.41:
 
=== Objects  ===
 
Here is the list of SPE Shadow Registers memory region objects i found in HV 3.15.


{| class="wikitable FCK__ShowTableBorders"
{| class="wikitable FCK__ShowTableBorders"
|-
|-
! Address in HV dump
! Start Address  
! LPAR id
! SPE
! LPAR Start Address  
! Size  
! Size  
! Physical Address
! Access Right
! Max Page Size
! Flags  
! Flags  
! log2(Page Size)
! Real Addresses
|-
|-
| 0x003ABDA0
| 0x0
| 2
| 0x1000000
| 1
| 0x3
| 0x300000012000
| 0x18
| 0x1000
| 0x8
| -  
| 0x1000000 - 0x1FFF000
| 0xA000000000000000
| 0xC
|-
|-
| 0x003B4290
| 0x500000300000
| 2
| 0xA0000
| 2
| 0x3
| 0x300000014000
| 0x10
| 0x1000
| 0x8
| -  
| 0x380000 - 0x38F000, 0x3B0000 - 0x3BF000, 0x1E0000 - 0x1FF000, 0x3C0000 - 0x3FF000, 0xFF00000 - 0xFF1F000
| 0xA000000000000000
| 0xC
|-
|-
| 0x003A8A00
| 0x700020000000
| 2
| 0xE900000 (huge memory region)
| 3
| 0x3
| 0x300000010000
| 0x14
| 0x1000
| 0x0
| -  
| 0x400000 - 0x5FF000, 0x800000 - 0xFFF000, 0x2000000 - 0xFEFF000
| 0xA000000000000000
| 0xC
|-
| 0x003B50F0
| 2
| 4
| 0x300000016000
| 0x1000
| -
| 0xA000000000000000
| 0xC
|-
| 0x001FFC90
| 2
| 5
| 0x30000000E000
| 0x1000
| -  
| 0xA000000000000000
| 0xC
|-
| 0x003AE5B0
| 2
| 6
| 0x300000018000
| 0x1000
| -
| 0xA000000000000000
| 0xC
|}
|}


== Device MMIO Memory Region class  ==
== HTAB Memory Region class  ==


This type of memory region is created when a device MMIO region is mapped into LPAR address space, e.g. in '''lv1_map_device_mmio_region'''.  
This memory region is created when a HTAB is mapped into LPAR's address space. It's created in '''lv1_map_htab''' HV call.  


=== vtable  ===
=== vtable  ===


0x00352468 (3.15)  
0x00357C98 (3.15)  


=== Member variables  ===
=== Member variables  ===


offset 0xA8 - physical address where the device MMIO region is mapped to
offset 0xB0 - pointer to VAS object that owns the HTAB


=== Objects  ===
=== Objects  ===


Here is the list of Device MMIO memory region objects i found in HV 3.15.  
Here is the list of HTAB memory region objects i found in HV 3.15.  


{| class="wikitable FCK__ShowTableBorders"
{| class="wikitable FCK__ShowTableBorders"
Line 5,258: Line 5,352:
! Address in HV dump  
! Address in HV dump  
! LPAR id  
! LPAR id  
! VAS id
! LPAR Start Address  
! LPAR Start Address  
! Size  
! Size  
! Flags  
! Flags  
! log2(Page Size)  
! log2(Page Size)
! Physical Address
! Device
|-
|-
| 0x001FDF00
| 0x001FE0F0
| 2  
| 2  
| 0x4000001D0000
| 3
| 0x10000
| 0x500000C00000
| 0x8000000000000000
| 0x100000
| 0xC
| 0xC000000000000000
| 0x24003010000
| 0x14
| USB controller
|-
|-
| 0x003B3850
| 0x003BD850
| 2  
| 2  
| 0x400000200000
| 3
| 0x10000
| 0x500004300000
| 0x8000000000000000
| 0x100000
| 0xC
| 0xC000000000000000
| 0x24003020000
| 0x14
| USB controller
|-
|-
| 0x003B6E50
| 0x003BDEA0
| 2  
| 2  
| 0x4000001E0000
| 3
| 0x10000
| 0x500004500000
| 0x8000000000000000
| 0x100000
| 0xC
| 0xC000000000000000
| 0x24003810000
| 0x14
| USB controller
|-
| 0x003B9950
| 2
| 0x4000001F0000
| 0x10000
| 0x8000000000000000
| 0xC
| 0x24003820000
| USB controller
|}
|}


== GPU Device Memory Region class ==
=== GameOS HTAB ===


This type of memory region is created e.g. in '''lv1_gpu_open''', '''lv1_gpu_device_map''' and '''lv1_undocumented_function_114'''.
*HTAB of GameOS is already mapped into address space of GameOS so that is why HV call '''lv1_map_htab''' will fail until you unmap it with '''lv1_unmap_htab'''
*Effective address of GameOS HTAB is '''0x800000000F000000'''
*Virtual address of GameOS HTAB is '''0xF000000'''
*Size of GameOS HTAB is '''0x40000'''
*GameOS HTAB supports large pages of size '''64K''' and '''1M'''  
*GameOS HTAB can be easily dumped by reading 0x40000 bytes at EA 0x800000000F000000


=== vtable ===
=== GameOS SLB ===


0x00357C48 (3.15)  
Here is the dump of SLB entries from GameOS 3.41:
 
<pre>0x8000000008000000  0x0000000000000500
=== Member variables  ===
0x8000000208000000  0x0000000000020500
 
0x8000000300000000  0x0000000000030510
offset 0xA8 - physical address
0x0000000000000000  0x0000000000000000
0x0000000080000000  0x0000000000038C00
0x00000000A0000000  0x000000000003AC00
0x00000000C0000000  0x000000000003CC00
0x0000000000000000  0x0000000000000000
0x0000000000000000  0x0000000000000000
0x0000000000000000  0x0000000000000000
0x0000000000000000  0x0000000000000000
0x0000000000000000  0x0000000000000000
0x0000000000000000  0x0000000000000000
0x0000000000000000  0x0000000000000000
0x0000000000000000  0x0000000000000000
0x0000000000000000  0x0000000000000000
0x0000000000000000  0x0000000000000000
0x0000000000000000  0x0000000000000000
0x0000000000000000  0x0000000000000000
0x0000000000000000  0x0000000000000000
0x0000000000000000  0x0000000000000000
0x0000000000000000  0x0000000000000000
0x0000000000000000  0x0000000000000000
0x0000000000000000  0x0000000000000000
0x0000000000000000  0x0000000000000000
0x0000000000000000  0x0000000000000000
0x0000000000000000  0x0000000000000000
0x0000000000000000  0x0000000000000000
0x0000000000000000  0x0000000000000000
0x0000000000000000  0x0000000000000000
0x0000000000000000  0x0000000000000000
0x0000000000000000  0x0000000000000000
0x8000000010057960  0x8000000000313E78
0x8000000010057940  0x0000000000000000
0x800000000001B698  0x0000000000000000
0x8000000010057930  0x8000000000490708
0x80000000002B6C68  0x80000000003DE928
0x8000000010057EC0  0x80000000003DE920
0x0000000000000000  0x8000000000309810
0x80000000004B3000  0x0000000000000000
0x8000000010057CC0  0x0000000000000000
0x80000000004AF000  0x80000000004E1F00
0x80000000100579C8  0x80000000100579C0
0x80000000100579E0  0x2400002200000000
0x80000000004CF5B0  0x8000000200012000
0x80000000100579F8  0x80000000100579F0
0x8000000010057A10  0x80000000004A3A00
0x80000000004CF5B0  0x80000000004C8D00
0x800000000001BF6C  0x80000000004CD400
0x800000000001B698  0x80000000004C8100
0x80000000100579D0  0x80000000004B48C0
0x0000000000001C08  0x0000000000000000
0x8000000010057A78  0x8000000010057A70
0x8000000010057A90  0x0000000000000000
0x80000000004CF90C  0x0000000000000000
0x0000000000000000  0x8000000010057A80
0x8000000010057A90  0x8000000000309810
0x80000000004CF62C  0x0000000000000000
0x8000000010057CC0  0x0000000000000000
0x80000000004AF000  0x80000000004B48C0
0x00004000001C0000  0x0000000000000001
0x00000000D0000000  0x0000A8E3EE7D10DA
0x0000000000000000  0x0000000000000000
0x80000000004D8088  0x80000000004D9000
</pre>
== SPE MMIO Memory Region class  ==
 
This type of memory region represents MMIO memory region of a SPE. It's created e.g. in '''lv1_construct_logical_spe''' or in '''syscall 0x10040'''.
 
=== vtable  ===
 
0x003583F8 (3.15)  
 
=== Member variables  ===


=== Objects  ===
=== Objects  ===


Here is the list of Device GPU memory region objects i found in HV 3.15.  
Here is the list of SPE memory region objects i found in HV 3.15.  


{| class="wikitable FCK__ShowTableBorders"
{| class="wikitable FCK__ShowTableBorders"
Line 5,322: Line 5,478:
! Address in HV dump  
! Address in HV dump  
! LPAR id  
! LPAR id  
! SPE
! LPAR Start Address  
! LPAR Start Address  
! Size  
! Size  
! Physical Address
! Flags  
! Flags  
! log2(Page Size)  
! log2(Page Size)
! Physical Address
|-
|-
| 0x003AF380
| 0x003ABC20
| 2  
| 2  
| 0x700190000000
| 1
| 0xFE00000
| 0x4C0000880000
| 0x8000000000000000
| 0x80000
| 0x14
| 0x20000080000
| 0x28080000000
| 0xA000000000000000
| 0xC
|-
|-
| 0x003AF500
| 0x003AAD70
| 2  
| 2  
| 0x4000001A0000
| 0xC000
| 0x8000000000000000
| 0xC
| 0x3C0000
|-
| 0x003AF680
| 2  
| 2  
| 0x4800006C0000
| 0x4C0000980000
| 0x40000
| 0x80000
| 0x8000000000000000
| 0x20000100000
| 0xC
| 0xA000000000000000
| 0x2808FE00000
| 0xC
|-
|-
| 0x003AFC30
| 0x003A8880
| 2  
| 2  
| 0x440000380000
| 3
| 0x20000
| 0x4C0000780000
| 0x8000000000000000
| 0x80000
| 0xC
| 0x20000180000
| 0x28000C00000
| 0xA000000000000000
| 0xC
|-
|-
| 0x003BB420
| 0x003B4F70
| 2  
| 2  
| 0x3C0000108000
| 4
| 0x8000
| 0x4C0000A80000
| 0x8000000000000000
| 0x80000
| 0xC  
| 0x20000200000
| 0x28000080100
| 0xA000000000000000
| 0xC
|-
| 0x003AB700
| 2
| 5
| 0x4C0000680000
| 0x80000
| 0x20000280000
| 0xA000000000000000
| 0xC
|-
| 0x003B5BE0
| 2
| 6
| 0x4C0000B80000
| 0x80000
| 0x20000300000
| 0xA000000000000000
| 0xC
|}
|}


== Direct Map Memory Region class ==
== SPE Shadow Registers Memory Region class ==


This type of memory region is created in HV call '''lv1_undocumented_function_114'''.
This type of memory region represents shadow registers memory region of a SPE. It's created e.g. in '''lv1_construct_logical_spe''' or in '''syscall 0x10040'''.  
'''lv1_undocumented_function_114''' allows you to map any memory address into LPAR's memory address.
 
* The HV call '''lv1_undocumented_function_115''' destroys a memory region of this type.
* HV allows GameOS to create objects of this type of size 0 only !!! But it can be exploited with a dangling HTAB entry.


=== vtable  ===
=== vtable  ===


0x00357C48 (3.15)  
0x00358448 (3.15)  


=== Member variables ===
=== Objects ===


offset 0xA8 - physical address
Here is the list of SPE Shadow Registers memory region objects i found in HV 3.15.


=== Exploiting HV with memory glitching and HV call lv1_undocumented_function_114 ===
{| class="wikitable FCK__ShowTableBorders"
 
|-
Here is a short description of the method i used to exploit HV from GameOS 3.15 and 3.41.
! Address in HV dump
 
! LPAR id
* First i used the Geohot's method to create a dangling HTAB entry.
! SPE
* Making memory glitch work on GameOS was the largest of my obstacles but i solved it and i'm able to create a dangling HTAB entry from GameOS within 1-3 minutes.
! LPAR Start Address
* Then i created many '''Direct Map Memory Region''' objects of size 0 with HV call '''lv1_undocumented_function_114''' and checked if they are within the page to which the dangling HTAB entry points to.
! Size
* When i found one such '''Direct Map Memory Region''' object i patched the size of this object to 0x1000. Then i pointed this memory region object to the code of HV call '''lv1_undocumented_function_114''' and patched 4 bytes in this HV call which allows me to create any '''Direct Map Memory Region''' objects without any restrictions.
! Physical Address
* Function '''LPAR_construct_direct_mapping_mem_region''' which is used by HV call '''lv1_undocumented_function_114''' has a parameter (register %r9) and when this parameter is not 0 then HV will allow you to create any '''Direct Map Memory Region''' objects without restrictions, but unfortunately the HV call '''lv1_undocumented_function_114''' passes 0 in this parameter, so i just patched it.
! Flags
* Then i mapped whole HV memory range with the patched HV call '''lv1_undocumented_function_114''' into the address space of GameOS.
! log2(Page Size)
* And now you have read/write access to the whole HV.
|-
* $ONY could fix this exploit by disallowing creating of '''Direct Map Memory Region''' objects of size 0, but i know tons of other HV C++ classes which will allow me to exploit the HV in a similar way, so it wouldn't bring $ONY anything :-) And they have to change member variable offsets in those objects to make sure that i cannot patch them easily :-)
| 0x003ABDA0
| 2
| 1  
| 0x300000012000
| 0x1000
| -  
| 0xA000000000000000
| 0xC
|-
| 0x003B4290
| 2
| 2
| 0x300000014000
| 0x1000
| -
| 0xA000000000000000
| 0xC
|-
| 0x003A8A00
| 2
| 3  
| 0x300000010000
| 0x1000  
| -
| 0xA000000000000000
| 0xC
|-
| 0x003B50F0
| 2
| 4  
| 0x300000016000
| 0x1000
| -
| 0xA000000000000000
| 0xC
|-
| 0x001FFC90
| 2
| 5
| 0x30000000E000
| 0x1000
| -
| 0xA000000000000000
| 0xC
|-
| 0x003AE5B0
| 2
| 6
| 0x300000018000
| 0x1000
| -  
| 0xA000000000000000
| 0xC
|}


== Methods ==
== Device MMIO Memory Region class ==


LPAR_get_memory_region_by_start_address - 0x002C7C40 (3.15)
This type of memory region is created when a device MMIO region is mapped into LPAR address space, e.g. in '''lv1_map_device_mmio_region'''.  


LPAR_get_memory_region_by_address - 0x002C7DA8 (3.15)
=== vtable  ===


LPAR_mem_addr_to_phys_addr(LPAR id, LPAR address, phys_addr) - 0x002FB8F0 (3.15)
0x00352468 (3.15)  


LPAR_construct_direct_mapping_mem_region - 0x002D4D04 (3.15)
=== Member variables  ===


= Network Devices  =
offset 0xA8 - physical address where the device MMIO region is mapped to


== Ethernet Gelic Device ==
=== Objects ===


device id = 0
Here is the list of Device MMIO memory region objects i found in HV 3.15.


MAC Address: 00:1F:A7:C6:2A:C5
{| class="wikitable FCK__ShowTableBorders"
|-
! Address in HV dump
! LPAR id
! LPAR Start Address
! Size
! Flags
! log2(Page Size)
! Physical Address
! Device
|-
| 0x001FDF00
| 2
| 0x4000001D0000
| 0x10000
| 0x8000000000000000
| 0xC
| 0x24003010000
| USB controller
|-
| 0x003B3850
| 2
| 0x400000200000
| 0x10000
| 0x8000000000000000
| 0xC
| 0x24003020000
| USB controller
|-
| 0x003B6E50
| 2
| 0x4000001E0000
| 0x10000
| 0x8000000000000000
| 0xC
| 0x24003810000
| USB controller
|-
| 0x003B9950
| 2
| 0x4000001F0000
| 0x10000
| 0x8000000000000000
| 0xC
| 0x24003820000
| USB controller
|}


device memory base address = 0x24003004000 (size = 0x1000)
== GPU Device Memory Region class  ==


== WLAN Gelic Device  ==
This type of memory region is created e.g. in '''lv1_gpu_open''', '''lv1_gpu_device_map''' and '''lv1_undocumented_function_114'''.


device id = 0
=== vtable  ===


MAC Address: 02:1F:A7:C6:2A:C5 (locally administered)  
0x00357C48 (3.15)  


=== Net Manager ===
=== Member variables ===


*Net Manager runs in Process 9
offset 0xA8 - physical address  
*It sends commands to '''/dev/sc1''' to reset WLAN Gelic device
*It opens '''/dev/net0''', sets MAC address and writes device firmware '''eurus_fw.bin''' to WLAN device by using '''ioctl''' syscall


=== /dev/net0 ===
=== Objects ===


The device supports 3 ioctl commands:
Here is the list of Device GPU memory region objects i found in HV 3.15.


*0 - 0x002AC10C (3.15)  
{| class="wikitable FCK__ShowTableBorders"
*1 - 0x002AC250 (3.15)
|-
*2 - EURUS_STAT 0x002AC320 (3.15)
! Address in HV dump
! LPAR id
! LPAR Start Address
! Size
! Flags
! log2(Page Size)  
! Physical Address
|-
| 0x003AF380
| 2
| 0x700190000000
| 0xFE00000
| 0x8000000000000000
| 0x14
| 0x28080000000
|-
| 0x003AF500
| 2
| 0x4000001A0000
| 0xC000
| 0x8000000000000000
| 0xC
| 0x3C0000
|-
| 0x003AF680
| 2
| 0x4800006C0000
| 0x40000
| 0x8000000000000000
| 0xC
| 0x2808FE00000
|-
| 0x003AFC30
| 2  
| 0x440000380000
| 0x20000
| 0x8000000000000000
| 0xC
| 0x28000C00000
|-
| 0x003BB420
| 2
| 0x3C0000108000
| 0x8000
| 0x8000000000000000
| 0xC
| 0x28000080100
|}


=== Methods  ===
== Direct Map Memory Region class ==


net_control_cmd_GELIC_LV1_POST_WLAN_CMD - 0x0024A55C (3.15)
This type of memory region is created in HV call '''lv1_undocumented_function_114'''.
'''lv1_undocumented_function_114''' allows you to map any memory address into LPAR's memory address.


net_control_wlan_cmd_GELIC_EURUS_CMD_ASSOC - 0x00246C78 (3.15)
* The HV call '''lv1_undocumented_function_115''' destroys a memory region of this type.
* HV allows GameOS to create objects of this type of size 0 only !!! But it can be exploited with a dangling HTAB entry.


net_control_wlan_cmd_GELIC_EURUS_CMD_START_SCAN - 0x00248A14 (3.15)
=== vtable  ===


net_control_wlan_cmd_GELIC_EURUS_CMD_SET_WEP_CFG - 0x00249F24 (3.15)  
0x00357C48 (3.15)  


net_control_wlan_cmd_GELIC_EURUS_CMD_SET_WPA_CFG - 0x002497B8 (3.15)
=== Member variables  ===


= Event Notification  =
offset 0xA8 - physical address


*Event Notfication is used e.g. to notify a LPAR about some event, e.g. device interrupt or notify a LPAR about destruction of another LPAR.
=== Exploiting HV with memory glitching and HV call lv1_undocumented_function_114 ===
*For example Process 9 is notified through Event Notification when LPAR 2 is destructed.
*During LPAR construction, Process 9 creates an Outlet object with '''syscall 0x1001A''' and then passes the outlet ID to the '''syscall 0x10009''' that constructs the LINUX LPAR. In this way Process 9 is notified when LINUX LPAR is destructed.


== Outlet class  ==
Here is a short description of the method i used to exploit HV from GameOS 3.15 and 3.41.


This is the base Outlet class. There are different types of Outlet and they derive from this base class.  
* First i used the Geohot's method to create a dangling HTAB entry.
* Making memory glitch work on GameOS was the largest of my obstacles but i solved it and i'm able to create a dangling HTAB entry from GameOS within 1-3 minutes.
* Then i created many '''Direct Map Memory Region''' objects of size 0 with HV call '''lv1_undocumented_function_114''' and checked if they are within the page to which the dangling HTAB entry points to.
* When i found one such '''Direct Map Memory Region''' object i patched the size of this object to 0x1000. Then i pointed this memory region object to the code of HV call '''lv1_undocumented_function_114''' and patched 4 bytes in this HV call which allows me to create any '''Direct Map Memory Region''' objects without any restrictions.
* Function '''LPAR_construct_direct_mapping_mem_region''' which is used by HV call '''lv1_undocumented_function_114''' has a parameter (register %r9) and when this parameter is not 0 then HV will allow you to create any '''Direct Map Memory Region''' objects without restrictions, but unfortunately the HV call '''lv1_undocumented_function_114''' passes 0 in this parameter, so i just patched it.
* Then i mapped whole HV memory range with the patched HV call '''lv1_undocumented_function_114''' into the address space of GameOS.
* And now you have read/write access to the whole HV.
* $ONY could fix this exploit by disallowing creating of '''Direct Map Memory Region''' objects of size 0, but i know tons of other HV C++ classes which will allow me to exploit the HV in a similar way, so it wouldn't bring $ONY anything :-) And they have to change member variable offsets in those objects to make sure that i cannot patch them easily :-)


=== vtable ===
== Methods ==


0x00357DC0 (3.15)  
LPAR_get_memory_region_by_start_address - 0x002C7C40 (3.15)  


=== Member variables  ===
LPAR_get_memory_region_by_address - 0x002C7DA8 (3.15)


offset 0x30 - type (8 bytes)  
LPAR_mem_addr_to_phys_addr(LPAR id, LPAR address, phys_addr) - 0x002FB8F0 (3.15)


offset 0x38 - pointer to LPAR that owns this Outlet object
LPAR_construct_direct_mapping_mem_region - 0x002D4D04 (3.15)


offset 0x48 - outlet id (8 bytes)
= Network Devices  =


offset 0x90 - VIRQ assigned to this Outlet object (4 bytes)
== Ethernet Gelic Device  ==


== Event Receive Port class  ==
device id = 0


*This type of Outlet is created e.g. in '''lv1_construct_event_receive_port''' and in '''syscall 0x1001A'''.
MAC Address: 00:1F:A7:C6:2A:C5
*HV calls '''lv1_connect_irq_plug''' and '''lv1_connect_irq_plug_ext''' assigns a VIRQ to Event Receive Port object.


=== vtable  ===
device memory base address = 0x24003004000 (size = 0x1000)


0x00357E88
== WLAN Gelic Device  ==


== VUART Outlet  ==
device id = 0


*HV supports only one VUART Outlet per LPAR
MAC Address: 02:1F:A7:C6:2A:C5 (locally administered)
*'''lv1_configure_virtual_uart_irq''' constructs a VUART Outlet object and passes the address of LPAR's VUART IRQ Bitmap to HV


=== vtable ===
=== Net Manager ===


0x00357DC0
*Net Manager runs in Process 9
*It sends commands to '''/dev/sc1''' to reset WLAN Gelic device
*It opens '''/dev/net0''', sets MAC address and writes device firmware '''eurus_fw.bin''' to WLAN device by using '''ioctl''' syscall


=== VUART IRQ Bitmap  ===
=== /dev/net0  ===
 
The device supports 3 ioctl commands:
 
*0 - 0x002AC10C (3.15)
*1 - 0x002AC250 (3.15)
*2 - EURUS_STAT 0x002AC320 (3.15)
 
=== Methods  ===
 
net_control_cmd_GELIC_LV1_POST_WLAN_CMD - 0x0024A55C (3.15)
 
net_control_wlan_cmd_GELIC_EURUS_CMD_ASSOC - 0x00246C78 (3.15)
 
net_control_wlan_cmd_GELIC_EURUS_CMD_START_SCAN - 0x00248A14 (3.15)
 
net_control_wlan_cmd_GELIC_EURUS_CMD_SET_WEP_CFG - 0x00249F24 (3.15)
 
net_control_wlan_cmd_GELIC_EURUS_CMD_SET_WPA_CFG - 0x002497B8 (3.15)
 
= Event Notification  =
 
*Event Notfication is used e.g. to notify a LPAR about some event, e.g. device interrupt or notify a LPAR about destruction of another LPAR.
*For example Process 9 is notified through Event Notification when LPAR 2 is destructed.
*During LPAR construction, Process 9 creates an Outlet object with '''syscall 0x1001A''' and then passes the outlet ID to the '''syscall 0x10009''' that constructs the LINUX LPAR. In this way Process 9 is notified when LINUX LPAR is destructed.
 
== Outlet class  ==
 
This is the base Outlet class. There are different types of Outlet and they derive from this base class.
 
=== vtable  ===
 
0x00357DC0 (3.15)
 
=== Member variables  ===
 
offset 0x30 - type (8 bytes)
 
offset 0x38 - pointer to LPAR that owns this Outlet object
 
offset 0x48 - outlet id (8 bytes)
 
offset 0x90 - VIRQ assigned to this Outlet object (4 bytes)
 
== Event Receive Port class  ==
 
*This type of Outlet is created e.g. in '''lv1_construct_event_receive_port''' and in '''syscall 0x1001A'''.
*HV calls '''lv1_connect_irq_plug''' and '''lv1_connect_irq_plug_ext''' assigns a VIRQ to Event Receive Port object.
 
=== vtable  ===
 
0x00357E88
 
== VUART Outlet  ==
 
*HV supports only one VUART Outlet per LPAR
*'''lv1_configure_virtual_uart_irq''' constructs a VUART Outlet object and passes the address of LPAR's VUART IRQ Bitmap to HV
 
=== vtable  ===
 
0x00357DC0
 
=== VUART IRQ Bitmap  ===


*At address 0x38(LPAR ptr) + 0x158 is the VUART IRQ Bitmap owned by HV for LPAR (4 * 8 bytes = 256 bits)  
*At address 0x38(LPAR ptr) + 0x158 is the VUART IRQ Bitmap owned by HV for LPAR (4 * 8 bytes = 256 bits)  
Line 5,940: Line 6,320:
     uint8_t res[2];
     uint8_t res[2];
     uint16_t cksum;              /* checksum of first 6 header bytes */
     uint16_t cksum;              /* checksum of first 6 header bytes */
     uint32_t communication_tag;   /* SYSCON tag: 0-4 */
     uint32_t index;               /* SYSCON index: 0-4 */
     uint16_t payload_size[2];    /* body size */
     uint16_t payload_size[2];    /* body size */
};
};
Line 6,438: Line 6,818:
* Command buffer size is '''0xe'''
* Command buffer size is '''0xe'''


offset 0xC - 0,1 or 2 (1 byte)
offset 0xC - ??? (1 byte)


offset 0xD - 2 (1 byte)
offset 0xD - ??? (1 byte)


====Set AP WEP Configuration (0x5b)====
====Set AP WEP Configuration (0x5b)====
Line 9,421: Line 9,801:
Received 8 bytes of data:
Received 8 bytes of data:
  00    00 06 00 00 00 00 00 04                            ........         
  00    00 06 00 00 00 00 00 04                            ........         
</pre>
</pre>
 
 
===Eject Media===
===Eject Media===
 
 
<pre>
<pre>
sg_raw /dev/sr0 0x1b 00 00 00 02 00
sg_raw /dev/sr0 0x1b 00 00 00 02 00
</pre>
</pre>
 
 
===Load Media===
===Load Media===
 
 
<pre>
<pre>
sg_raw /dev/sr0 0x1b 00 00 00 03 00
sg_raw /dev/sr0 0x1b 00 00 00 03 00
</pre>
</pre>
 
 
===Mode Select 10===
===Mode Select 10===
 
 
====Enable Buffer Write====
====Enable Buffer Write====
 
 
* Uses '''PF 0x1''', '''SP 0x0''' and '''parameter list length 0x10'''
* Uses '''PF 0x1''', '''SP 0x0''' and '''parameter list length 0x10'''
* Uses the following parameter list: '''0x00 0x0e 0x00 0x00 0x00 0x00 0x00 0x00 0x2d 0x6 <buffer id> 0x00 0x00 0x00 0x00 0x00'''
* Uses the following parameter list: '''0x00 0x0e 0x00 0x00 0x00 0x00 0x00 0x00 0x2d 0x6 <buffer id> 0x00 0x00 0x00 0x00 0x00'''
* '''Enables writing to BD drive flash, e.g. to HRL buffer !!!'''
* '''Enables writing to BD drive flash, e.g. to HRL buffer !!!'''
 
 
Test with sg3-utils which enables write to HRL buffer:
Test with sg3-utils which enables write to HRL buffer:
<pre>
<pre>
sg_raw /dev/sr0 55 10 00 00 00 00 00 00 10 00 00 0e 00 00 00 00 00 00 2d 06 04 00 00 00 00 00
sg_raw /dev/sr0 55 10 00 00 00 00 00 00 10 00 00 0e 00 00 00 00 00 00 2d 06 04 00 00 00 00 00
</pre>
</pre>
 
 
===Write Buffer===
===Write Buffer===
 
 
* Used e.g. by Update Manager to send BD firmware to BD drive
* Used e.g. by Update Manager to send BD firmware to BD drive
* '''Mode 0x5 (Download microcode and save)''' is used e.g. to write HRL to BD drive flash
* '''Mode 0x5 (Download microcode and save)''' is used e.g. to write HRL to BD drive flash
* '''Mode 0x7 (Download microcode with offsets and save)''' is used e.g. to write BD firmware to BD drive flash
* '''Mode 0x7 (Download microcode with offsets and save)''' is used e.g. to write BD firmware to BD drive flash
 
 
==AACS==
==AACS==
 
 
===AACS SPU Module===
===AACS SPU Module===
 
 
* BD player on GameOS uses '''AacsModule.spu.isoself''' (/dev_flash/bdplayer) to perform AACS authentication
* BD player on GameOS uses '''AacsModule.spu.isoself''' (/dev_flash/bdplayer) to perform AACS authentication
* Tested on OtherOS++ 3.55
* Tested on OtherOS++ 3.55
* Host certificate, host private key and AACS LA public key are stored encrypted with AES-256-CTR in the SPU module and are decrypted when the SPU module is loaded or when it's accessed first. The AES-256-CTR key and IV are in the SPU module too.
* Host certificate, host private key and AACS LA public key are stored encrypted with AES-256-CTR in the SPU module and are decrypted when the SPU module is loaded or when it's accessed first. The AES-256-CTR key and IV are in the SPU module too.
* 4.76 uses new Host certificate
 
 
====Communication====
====Communication====
 
 
* BD player reads '''EID3''' with '''Indi Info Manager 0x17001/0x17002''' services and passes it to SPU module
* BD player reads '''EID3''' with '''Indi Info Manager 0x17001/0x17002''' services and passes it to SPU module
* '''EID3 is NEVER used in the SPU module although BD player passes it to the SPU module'''
* '''EID3 is NEVER used in the SPU module although BD player passes it to the SPU module'''
* Data is exchanged with the SPU module through '''SPU In Mbox''', '''SPU Out Intr Mbox''' and a data buffer in XDR memory of size '''0x2000''' bytes.
* Data is exchanged with the SPU module through '''SPU In Mbox''', '''SPU Out Intr Mbox''' and a data buffer in XDR memory of size '''0x2000''' bytes.
 
 
====Commands====
====Commands====
 
 
* The SPU module supports max '''0x78''' commands but not all are implemented
* The SPU module supports max '''0x78''' (til 4.75, 0x57 since 4.76) commands but not all are implemented
* After a command is finished by the SPU module, it sends the status of the command to PPU through '''SPU Out Intr Mbox'''. Value 0 means success.
* After a command is finished by the SPU module, it sends the status of the command to PPU through '''SPU Out Intr Mbox'''. Value 0 means success.
 
=====Read 4 Bytes from XDR Buffer (0x2)=====
 
* It just reads 4 bytes of data from the XDR buffer passed to the SPU module.
 
=====Set KCD (0x1e)=====
 
* Sends KCD (Key Conversion Data) to the SPU module.
* KCD is encrypted with the Bus Key which was established previously by AACS authentication.
 
=====Init AES_H (0x34)=====
 
* Initializes AES_H hashing function.
 
=====Calculate AES_H 1 (0x35)=====
 
* Calculates AES_H hash of the data stored in XDR buffer.
 
=====Calculate AES_H 2 (0x36)=====
 
* Calculates AES_H hash of the data stored in XDR buffer.
 
=====Generate Host Nonce (0x3c)=====
 
* Generates a nonce which is returned in command '''0x3d'''
 
=====Get Host Nonce and Certificate (0x3d)=====
 
* The data returned by this command is of size '''0x14 (Nonce) + 0x5c (Host Certificate)'''
* The data returned by this command is sent by BD player with SCSI command '''SEND KEY''' to BD drive during AACS authentication
* '''Host Certificate is easy to get from the SPU module, e.g. with aacs_module on OtherOS++'''
* The data contains a nonce, host public key and host certificate signature.
 
=====Set Drive Nonce and Certificate (0x3e)=====
 
* Stores BD drive nonce and certificate in local memory of SPU
 
=====Verify Drive Certificate (0x3f)=====
 
=====Set Drive Key (0x40)=====
 
=====Sign Host Key (0x44)=====
 
=====Get Host Key (0x45)=====
 
=====Calculate Bus Key (0x46)=====
 
=====Set Volume ID (0x47)=====
 
* Sends volume id and its MAC to the SPU module
 
=====Calculate Volume ID MAC (0x48)=====
 
* Calculates MAC of the passed volume id
 
=====Verify Volume ID MAC (0x49)=====
 
* Verifies MAC of the passed volume id
 
=====Set PMSN (0x4a)=====
 
* Sends PMSN and its MAC to the SPU module
 
=====Calculate PMSN MAC (0x4b)=====
 
* Calculates MAC of the passed PMSN
 
=====Verify PMSN (0x4c)=====
 
* Verifies MAC of the passed PMSN
 
=====Set Media ID (0x4d)=====
 
* Sends media id and its MAC to the SPU module
 
=====Calculate Media ID MAC (0x4e)=====
 
* Calculates MAC of the passed media id
 
=====Verify Media ID MAC (0x4f)=====
 
* Verifies MAC of the passed media id
 
=====Unknown (0x54)=====
 
=====Verify Host/Drive Revocation (0x55)=====
 
* BD player stores HRL/DRL list entries in XDR buffer and passes it to the SPU module for verification


=====Terminate Session (0xfefefeff)=====


{| class="wikitable sortable"
|+ style="caption-side:bottom; color:#e76700;"|''No full list!''
! colspan="2" style="background-color:#FFEBAD;"| Command in FW !! rowspan="2" style="background-color:#FFEBAD;"| Name !! rowspan="2" style="background-color:#FFEBAD;"| Parameters !! rowspan="2" style="background-color:#FFEBAD;"| Info
|-
! style="background-color:#FFEBAD;"| -4.75 !! style="background-color:#FFEBAD;"| 4.76+
|-
| 0x02|| 0x34 || Read 4 Bytes from XDR Buffer || ||
* It just reads 4 bytes of data from the XDR buffer passed to the SPU module.
|-
| 0x1C|| 0x48 || Set KCD || ||
* Sends KCD (Key Conversion Data) to the SPU module.
* KCD is encrypted with the Bus Key which was established previously by AACS authentication.
|-
| 0x34|| 0x23 || Init AES_H || ||
* Initializes AES_H hashing function.
|-
| 0x35|| 0x22 || Calculate AES_H 1 || ||
* Calculates AES_H hash of the data stored in XDR buffer.
|-
| || 0x21 ||  || 2x 4 Bytes ||
Signed CSS CheckCRL
|-
| || 0x56||  || ||
Get Random Seed
|-
| || 0x32||  || ||
Unknown
|-
| 0x36|| 0x24 || Calculate AES_H 2 || ||
* Calculates AES_H hash of the data stored in XDR buffer.
|-
| 0x3C|| 0x12 || Generate Host Nonce || ||
* Generates a nonce which is returned in command '''0x3D''' / '''0x0C'''
|-
| 0x3D|| 0x0C || Get Host Nonce and Certificate || ||
* The data returned by this command is of size '''0x14 (Nonce) + 0x5c (Host Certificate)'''
* The data returned by this command is sent by BD player with SCSI command '''SEND KEY''' to BD drive during AACS authentication
* '''Host Certificate is easy to get from the SPU module, e.g. with aacs_module on OtherOS++'''
* The data contains a nonce, host public key and host certificate signature.
|-
| 0x3E|| 0x0D|| Set Drive Nonce and Certificate || ||
* Stores BD drive nonce and certificate in local memory of SPU
|-
| 0x3F|| 0x0E|| Verify Drive Certificate || ||
|-
| 0x40|| 0x0A|| Set Drive Key || ||
|-
| 0x44|| 0x10 || Sign Host Key || ||
|-
| 0x45|| 0x0B || Get Host Key || ||
|-
| 0x46|| 0x14 || Calculate Bus Key || ||
|-
| 0x47|| 0x1C || Set Volume ID || ||
* Sends volume id and its MAC to the SPU module
|-
| 0x48|| 0x1D || Calculate Volume ID MAC || ||
* Calculates MAC of the passed volume id
|-
| 0x49|| 0x15 || Verify Volume ID MAC || ||
* Verifies MAC of the passed volume id
|-
| 0x4A|| 0x1A || Set PMSN || ||
* Sends PMSN and its MAC to the SPU module
|-
| 0x4B|| 0x1B || Calculate PMSN MAC || ||
* Calculates MAC of the passed PMSN
|-
| 0x4C|| 0x16 || Verify PMSN || ||
* Sends media id and its MAC to the SPU module
|-
| 0x4D|| 0x18 || Set Media ID || ||
* Sends media id and its MAC to the SPU module
|-
| 0x4E|| 0x19 || Calculate Media ID MAC || ||
* Calculates MAC of the passed media id
|-
| 0x4F|| 0x17 || Verify Media ID MAC || ||
* Verifies MAC of the passed media id
|-
| 0x55|| 0x1F || Verify Host/Drive Revocation || ||
* BD player stores HRL/DRL list entries in XDR buffer and passes it to the SPU module for verification
|-
| 0x72|| 0x25 ||  || || OCRL related, Content Revocation List
|-
| 0x74|| 0x26 ||  || || OCRT related
|-
| 0x75|| 0x27 ||  || || OSIG related
|-
| 0xFEFEFEFF|| 0xFEFEFEFF|| Terminate Session || ||
* AACS SPU module runs and processes commands as long as you need
* AACS SPU module runs and processes commands as long as you need
* After a command is complete, the SPU module waits for the next command
* After a command is complete, the SPU module waits for the next command
* This command terminates the current session and stops SPU module
* This command terminates the current session and stops SPU module
|-
|}


===Drive Revocation List (DRL)===
===Drive Revocation List (DRL)===
Line 10,547: Line 10,923:


====P-Block====
====P-Block====
Decrypted P-Block (and EID4) contains region settings (see below)
In decrypted P-Block(bytes 0x30 and 0x32) and in EID4(first byte) these bytes match [[Product Code]]:
{| class="wikitable sortable" style="font-size:small; border:2px ridge #999999;"
|-
! Hex !! bitflag !! [[Product Code]] !! Console Type !! Remarks
|-
| 0xFF || '''11111111''' || {{TID80}} || No BD playback on that [[Product Code]]
|-
| 0xFF || '''11111111''' || {{TID81}} || No BD playback on that [[Product Code]]
|-
| 0xFF || '''11111111''' || {{TID82}} || No BD playback on that [[Product Code]]
|-
| 0x01 || 0000000'''1''' || {{TID83}} || bit 0 (Region 0: Japan?)
|-
| 0x02 || 000000'''1'''0 || {{TID84}} || bit 1 (Region 1: USA & Canada, Bermuda, and US Territories)
|-
| 0x04 || 00000'''1'''00 || {{TID85}} || bit 2 (Region 2: Europe (with the exceptions of Russia, Ukraine, Belarus), South Africa, Swaziland, Middle East, Egypt, Lesotho, and Greenland)
|-
| 0x10 || 000'''1'''0000 || {{TID86}} || bit 4 (Region 3: Southeastern Asia)
|-
| 0x04 || 00000'''1'''00 || {{TID87}} || bit 2 (Region 2: Europe (with the exceptions of Russia, Ukraine, Belarus), South Africa, Swaziland, Middle East, Egypt, Lesotho, and Greenland)
|-
| 0x08 || 0000'''1'''000 || {{TID88}} || bit 3 (Region 4: Latin America and Australia)
|-
| 0x08 || 0000'''1'''000 || {{TID89}} || bit 3 (Region 4: Latin America and Australia)
|-
| 0x20 || 00'''1'''00000 || {{TID8A}} || bit 5 (Region 5: Russia, Asia (non-southeast), and Africa)
|-
| 0x10 || 000'''1'''0000 || {{TID8B}} || bit 4 (Region 3: Southeastern Asia)
|-
| 0x20 || 00'''1'''00000 || {{TID8C}} || bit 5 (Region 5: Russia, Asia (non-southeast), and Africa)
|-
| 0x40 || 0'''1'''000000 || {{TID8D}} || bit 6? (Region 6: China)
|-
| 0x10 || 000'''1'''0000 || {{TID8E}} || bit 4  (Region 3: Southeastern Asia)
|-
| 0x08 || 0000'''1'''000 || {{TID8F}} || bit 3 (Region 4: Latin America and Australia)
|-
| 0xFF || '''11111111''' || {{TIDA0}} || No BD playback on that [[Product Code]]
|-
|}


=====Creating=====
=====Creating=====
Line 10,750: Line 11,083:
lv1_destruct_logical_spe (0x00000000)
lv1_destruct_logical_spe (0x00000000)
</pre>
</pre>
{{Reverse engineering}}<noinclude>[[Category:Main]]</noinclude>
Please note that all contributions to PS3 Developer wiki are considered to be released under the GNU Free Documentation License 1.2 (see PS3 Developer wiki:Copyrights for details). If you do not want your writing to be edited mercilessly and redistributed at will, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource. Do not submit copyrighted work without permission!

To protect the wiki against automated edit spam, we kindly ask you to solve the following hCaptcha:

Cancel Editing help (opens in new window)