Editing Hypervisor Reverse Engineering

Jump to navigation Jump to search
Warning: You are not logged in. Your IP address will be publicly visible if you make any edits. If you log in or create an account, your edits will be attributed to your username, along with other benefits.

The edit can be undone. Please check the comparison below to verify that this is what you want to do, and then publish the changes below to finish undoing the edit.

Latest revision Your text
Line 1: Line 1:
<span style="background:red; color:#ffffff;">Warning, this page is way too long and is voted to be split into seperate sections</span>
[[Category:Software]]
<span style="background:red; color:#ffffff;">Warning, this page way too long and voted to be split into seperate sections</span>


----
----
Line 19: Line 20:
LPAR = Logical Partition  
LPAR = Logical Partition  


lpar1 starts at 0x&lt;unknown&gt;, and it's believed to be the memory space where lv1 stores its variables, flags and other data.  
lpar1 starts at 0x&lt;unknown&gt;, and its believed to be the memory space where lv1 stores its variables, flags and other data.  


lpar2 starts at 0x80000000000 and it's believed to be the memory space where lv2 stores its variables, flags and other data.  
lpar2 starts at 0x80000000000 and it's belived to be the memory space where lv2 stores its variables, flags and other data.  


<br>
<br>
Line 180: Line 181:
There are 2 system call tables in HV. The first one stores system calls 0 - 36. The second one stores system calls 0x10000 - 0x100FF.  
There are 2 system call tables in HV. The first one stores system calls 0 - 36. The second one stores system calls 0x10000 - 0x100FF.  


== UX System call table 0 - 36  ==
== System call table 0 - 36  ==


0x0035FAE8 (3.15)  
0x0035FAE8 (3.15)  
Line 187: Line 188:


=== System call numbers  ===
=== System call numbers  ===
0x0 - void eosh(void) //end_of_signal_handling(void)


0x1 - pid_t getpid(void)  
0x1 - getpid(void)  


0x2 - pid_t getppid(void)  
0x2 - getppid(void)  


0x3 - pid_t fork(void)  
0x3 - fork(void)  


0x4 - void exit(int status)
0x4 - exit  


0x5 - void execv(const char *path, char *const argv[])  
0x5 - exec(filename)  


0x6 - void wait(int *status)  
0x6 - wait(status)  


0x7 - int open(const char *path, int flags)  
0x7 - open(filename)  


0x8 - void close(int fd)  
0x8 - close(fd)  


0x9 - ssize_t read(int fd, void *buf, unsigned int nbyte)
0x9 - read  


0xA - ssize_t write(int fd, const void *buf, unsigned int nbyte)
0xA - write  


0xB - void lseek(int fd, long offset, int whence)
0xB - seek


0xC - unlink(const char *path)  
0xC - unlink(filename)  


0xD - void signal(int sig, void *func(int sig))
0xD - signal  


0xE - int kill(int pid, int signal_type)  
0xE - kill(pid, signal type)  


0xF - int brk(void *addr)
0xF - brk  


0x10 - int socket(int af, int type, int protocol) (supports only address family 0x1F, type 0x0 and protocol 0x0)  
0x10 - socket(af, type, protocol) (supports only address family 0x1F, type 0x0 and protocol 0x0)  


0x11 - int bind(int sockfd , const sockaddr *addr, unsigned int addrlen)
0x11 - bind  


0x12 - int listen(int sockfd, int backlog)  
0x12 - listen(fd, backlog)  


0x13 - int accept(int sockfd, sockaddr *addr, unsigned int *addrlen)
0x13 - accept  


0x14 - int connect(int sockfd, const sockaddr *serv_addr, unsigned int addrlen)
0x14 - connect  


0x15 - void putchar(int c)
0x15 -&nbsp;?


0x16 - int pause(void)  
0x16 - pause(void)  


0x17 - int sleep(unsigned int seconds)  
0x17 - sleep(seconds)  


0x18 - int mmap(void *addr, unsigned long size, int prot, int flags, int fd, long offset, void *mapped_addr)  
0x18 - mmap(addr, size, prot, flags, fd, offset)  


0x19 - int munmap (void *addr, unsigned long size)
0x19 - munmap  


0x1A - int chdir(const char *path)
0x1A - some fs func for directories, perhaps readdir


0x1B - void getchar(char *c)
0x1B -&nbsp;?


0x1C - map_pages(...) (used for alloc)  
0x1C - map_pages (used for alloc)  


0x1D - unmap_pages(...) (used for free)  
0x1D - unmap_pages (used for free)  


0x1E - int select(int nfds, fd_set *readfds, fd_set *writefds, fd_set *exceptfds, struct timeval *timeout)
0x1E - select  


0x1F - getcwd(...)
0x1F - getcwd  


0x20 - Not used
0x20 -&nbsp;?


0x21 - unsigned int alarm(unsigned int seconds)
0x21 - alarm  


0x22 - int ioctl(int fd, unsigned __int64 request, ...)
0x22 - ioctl  


0x23 - pme_memalign(...)
0x23 - _map_pages


0x24 - ?
0x24 - _unmap_pages


== PMI System call table 0x10000 - 0x100FF  ==
== System call table 0x10000 - 0x100FF  ==


0x0035DE78 (3.15)  
0x0035DE78 (3.15)  
Line 269: Line 269:
=== System call numbers  ===
=== System call numbers  ===


0x10000 - allocate_memory(LPAR id, size, log2 of page size,&nbsp;?,&nbsp;?) / construct_memory_segment
0x10000 - allocate_memory_region(LPAR id, size, log2 of page size,&nbsp;?,&nbsp;?)  


0x10001 - query_logical_partition_address_region_info
0x10001 - lpar_query_address_region_info


0x10002 - translate_logical_partition_to_physical_address(LPAR id, LPAR address, physical addr)  
0x10002 - lpar_memory_addr_to_phys_addr(LPAR id, LPAR address, physical addr)  
 
0x10003 - map_physical_address_region
 
0x10004 - unmap_physical_address_region


0x10005 - construct_logical_pu  
0x10005 - construct_logical_pu  
0x10006 - destruct_logical_pu


0x10007 - activate_logical_pu(LPAR id, PPE id)  
0x10007 - activate_logical_pu(LPAR id, PPE id)  


0x10009 - construct_logical_partition(0, LPAR id, outlet)  
0x10009 - construct_logical_partition(0, LPAR id, outlet)  
0x1000A - get_logical_console_info
0x1000B - get_remote_file_size
0x1000C - read_remote_file
0x1000D - write_remote_file


0x1000E - release_memory_region(LPAR id, memory region address)  
0x1000E - release_memory_region(LPAR id, memory region address)  


0x1001A - construct_event_receive_port  
0x1001A - construct_event_receive_port  
0x1001B - destruct_event_receive_port
0x1001C - request_to_connect_event_ports
0x1001D - connect_event_ports
0x1001E - destruct_event_send_port
0x1001F - send_event_externally
0x10020 - get_status_of_event_send_port
0x10021 - get_event_port_connection_request
0x10022 - end_of_control_signal_processing


0x10024 - shutdown_logical_partition(LPAR id, shutdown command)  
0x10024 - shutdown_logical_partition(LPAR id, shutdown command)  
Line 320: Line 290:


0x10026 - get_logical_partition_info  
0x10026 - get_logical_partition_info  
0x10027 - read_privilege_set
0x10028 - modify_privilege_set
0x10029 - get_remote_file_size_long_name
0x1002A - read_remote_file_long_name
0x1002B - write_remote_file_long_name


0x1002C - construct_scheduling_table  
0x1002C - construct_scheduling_table  
Line 335: Line 295:
0x1002D - set_scheduling_slot  
0x1002D - set_scheduling_slot  


0x1002E - load_scheduling_table
0x1002E - ?
 
0x10032 - poweroff


0x10033 - get_remote_file_name
0x10032 - accesses system console


0x10034 - allocate_cp_channel
0x10034 - ?


0x10035 - release_cp_channel
0x10035 - ?


0x10036 - power_down
0x10036 - accesses system console


0x10037 - ?
0x10037 - ?
Line 353: Line 311:
0x10039 - ?
0x10039 - ?


0x10040 - construct_spe_type_1(SPE id, shaddow_addr) / construct_logical_spu
0x10040 - construct_spe_type_1(SPE id, shaddow_addr)  


0x10041 - destruct_spe(SPE id) / destruct_logical_spu
0x10041 - destruct_spe(SPE id)  


0x10042 - decrypt_lv2_self(spe id, LPAR auth id, SELF file image ptr, LPAR memory address)  
0x10042 - decrypt_lv2_self(spe id, LPAR auth id, SELF file image ptr, LPAR memory address)  
Line 363: Line 321:
0x10044 - disable_spe_execution  
0x10044 - disable_spe_execution  


0x10045 - read_spu_puint_mb(unsigned long spu_id, unsigned long msg)
0x10045 - set_spe_interrupt_mask
 
0x10046 - read_spe_problem_state_register(spe id, register offset, value) / read_spu_problem_state_area_register


0x10047 - write_spe_problem_state_register(spe id, register offset, value) / write_spu_problem_state_area_register
0x10046 - read_spe_problem_state_register(spe id, register offset, value)  


0x1004A - install_revoke_list
0x10047 - write_spe_problem_state_register(spe id, register offset, value)


0x1004B - disable_spe_loading  
0x1004B - disable_spe_loading  
0x1004C - install_access_control_table?
0x1004D - get_storage_status?
0x1004E - get_region_table_bits?
0x1004F - commit_region_update?
0x10050 - abort_region_update?
0x10051 - set_storage_tampered?


0x10053 - pmi_set_guest_os_mode  
0x10053 - pmi_set_guest_os_mode  


0x1007F - pause
0x10081 - accesses system console
 
0x10080 - get_total_execution_time
 
0x10081 - reset
 
0x10083 - construct_logical_rsx


0x10084 - construct_virtual_uart(LPAR id, VUART id, VUART data buffer size)  
0x10084 - construct_virtual_uart(LPAR id, VUART id, VUART data buffer size)  


0x10085 - destruct_virtual_uart(LPAR id, VUART id)  
0x10085 - destruct_virtual_uart(LPAR id, VUART id)  
0x10086 - establish_virtual_uart_channel


0x10088 - RSX_syscall_10088(LPAR id)  
0x10088 - RSX_syscall_10088(LPAR id)  
Line 415: Line 351:
0x100C2 - modify_repository_node_value(LPAR id)  
0x100C2 - modify_repository_node_value(LPAR id)  


0x100C3 - remove_repository_node(LPAR id)
0x100C3 - remove_repository_node_value(LPAR id)


= Process  =
= Process  =
Line 423: Line 359:
HV supports only 32 processes simultaneously. The number of processes currently running in HV is stored at address 0x0035EA54 (3.15) and 0x00357E3C (2.60).  
HV supports only 32 processes simultaneously. The number of processes currently running in HV is stored at address 0x0035EA54 (3.15) and 0x00357E3C (2.60).  


The process table is an array of 32 process table entries.
The process table is an array of 32 process table entries.  
 
0x0036C930 (4.30)
 
0x0036C8B0 (4.21)
 
0x00365458 (4.11)


0x0035F8D0 (3.55)
0x0035F8D0 (3.55)
Line 570: Line 500:
*0x000A9870 (PID 6)  
*0x000A9870 (PID 6)  
*0x00084B80 (PID 9)
*0x00084B80 (PID 9)
In JIG 2.43:
*(PID3) <- ss_server3
*(PID4) <- ss_sc_init_pu
*(PID5) <- ss_server2
*(PID6) <- ss_server1
*(PID7) <- factory_data_mngr_server
*(PID8) <- updater_frontend
(see [http://pastie.org/pastes/9407461/text?key=f6bk5lof0g4bgeu6xrn5ua this])


= PThread  =
= PThread  =
Line 671: Line 591:
== Member variables  ==
== Member variables  ==


offset 0x0 - pointer to previous AddressProtectionDomain object  
offset 0x8 - pointer to previous AddressProtectionDomain object  


offset 0x8 - pointer to next AddressProtectionDomain object  
offset 0x10 - pointer to next AddressProtectionDomain object  


offset 0x10 - poiinter to pointer to SLB entries  
offset 0x18 - poiinter to pointer to SLB entries  


offset 0x18 - pointer to AddressSpace object that owns this object  
offset 0x20 - pointer to AddressSpace object that owns this object  


offset 0x2A - pointer to previous ProtectionPage  
offset 0x34 - pointer to previous ProtectionPage  


offset 0x34 - pointer to next ProtectionPage  
offset 0x3C - pointer to next ProtectionPage  


offset 0x40 - Mutex object
offset 0x48 - Mutex object  


= ProtectionPage  =
= ProtectionPage  =
Line 840: Line 760:
=== vtable  ===
=== vtable  ===


0x003569F8 (3.15)
0x003569F8 (3.15)  


== IOIF device file objects  ==
== IOIF device file objects  ==
Line 1,026: Line 946:
=== vtable  ===
=== vtable  ===


0x352308 (3.15)
0x000x352308 (3.15)  


=== Member variables  ===
=== Member variables  ===
Line 1,705: Line 1,625:


*Before a storage region is accessed, HV checks access rights of the caller.  
*Before a storage region is accessed, HV checks access rights of the caller.  
*Repository node '''ss.laid''' ([[Authority ID|LPAR Authority ID]]) is evaluated for this purpose.  
*Repository node '''ss.laid''' (LPAR authentication id) is evaluated for this purpose.  
*If LPAR has a repository node '''ios.ata.region0.access''' (value doesn't matter) then the access rights check never fails. After System Manager sets ATA keys it removes this repository node from LPAR 1. If we add this repository node again or patch System Manager so it's not removed then we will be able to access all storage regions of all storage devices.
*If LPAR has a repository node '''ios.ata.region0.access''' (value doesn't matter) then the access rights check never fails. After System Manager sets ATA keys it removes this repository node from LPAR 1. If we add this repository node again or patch System Manager so it's not removed then we will be able to access all storage regions of all storage devices.
*'''ALL storage accesses from LPAR 1 are allowed'''  
*'''ALL storage accesses from LPAR 1 are allowed'''  
Line 1,758: Line 1,678:


*The storage subsystem is a storage device itself.  
*The storage subsystem is a storage device itself.  
*It's a pseudo device used to notify a LPAR when storage devices become e.g. ready.  
*It's a psuedo device used to notify a LPAR when storage devices become e.g. ready.  
*Linux implements a loop and reads from this device and process notifications (adds new devices dynamically).
*Linux implements a loop and reads from this device and process notifications (adds new devices dynamically).


Line 1,836: Line 1,756:


*The commands can be used with HV call '''lv1_storage_send_device_command'''.  
*The commands can be used with HV call '''lv1_storage_send_device_command'''.  
*However, before a command is executed HV does bit manipulation with it and checks it against the value of repository node '''ss.laid''' or also called '''[[Authority ID|LPAR Authority ID]]'''. If this test fails then the command is NOT executed.
*However, before a command is executed HV does bit manipulation with it and checks it against the value of repository node '''ss.laid''' or also called '''LPAR authentication ID'''. If this test fails then the command is NOT executed.


{| class="wikitable FCK__ShowTableBorders"
{| class="wikitable FCK__ShowTableBorders"
Line 2,089: Line 2,009:


*The commands can be used with HV call '''lv1_storage_send_device_command'''.  
*The commands can be used with HV call '''lv1_storage_send_device_command'''.  
*However, before a command is executed HV does bit manipulation with it and checks it against the value of repository node '''ss.laid''' or also called '''[[Authority ID|LPAR Authority ID]]'''. If this test fails then the command is NOT executed.
*However, before a command is executed HV does bit manipulation with it and checks it against the value of repository node '''ss.laid''' or also called '''LPAR authentication ID'''. If this test fails then the command is NOT executed.


{| class="wikitable FCK__ShowTableBorders"
{| class="wikitable FCK__ShowTableBorders"
Line 2,689: Line 2,609:


*The commands can be used with HV call '''lv1_storage_send_device_command'''.  
*The commands can be used with HV call '''lv1_storage_send_device_command'''.  
*However, before a command is executed HV does bit manipulation with it and checks it against the value of repository node '''ss.laid''' or also called '''[[Authority ID|LPAR Authority ID]]'''. If this test fails then the command is NOT executed.
*However, before a command is executed HV does bit manipulation with it and checks it against the value of repository node '''ss.laid''' or also called '''LPAR authentication ID'''. If this test fails then the command is NOT executed.


{| class="wikitable FCK__ShowTableBorders"
{| class="wikitable FCK__ShowTableBorders"
Line 2,742: Line 2,662:
block size = 512  
block size = 512  


*It's a pseudo device.  
*It's a psuedo device.  
*'''This storage device redirects all requests to the region 1 of HDD storage device&nbsp;!!!'''
*'''This storage device redirects all requests to the region 1 of HDD storage device&nbsp;!!!'''


Line 3,475: Line 3,395:
! Address of Data in HV Dump  
! Address of Data in HV Dump  
! Size of Data
! Size of Data
! Entry Id
|-
|-
| 0  
| 0  
| lv1ldr
| -
| 0x0C150000  
| 0x0C150000  
| 0x1E5CC
| 0x1E5CC
| 0x01
|-
|-
| 1  
| 1  
Line 3,487: Line 3,405:
| 0x00011000  
| 0x00011000  
| 0xE8D0
| 0xE8D0
| 0x00
|-
|-
| 2  
| 2  
Line 3,493: Line 3,410:
| 0x00020000  
| 0x00020000  
| 0x16DA0
| 0x16DA0
| 0x02
|-
|-
| 3  
| 3  
Line 3,499: Line 3,415:
| 0x00055000  
| 0x00055000  
| 0x12E44
| 0x12E44
| 0x04
|-
|-
| 4  
| 4  
Line 3,505: Line 3,420:
| 0x00037000  
| 0x00037000  
| 0x1DAE4
| 0x1DAE4
| 0x03
|-
|-
| 5  
| 5  
Line 3,511: Line 3,425:
| 0x00068000  
| 0x00068000  
| 0x860
| 0x860
| 0x0C
|-
|-
| 6  
| 6  
| QA Flag
| -
| 0x00069010  
| 0x00069010  
| 0x8
| 0x8
| 0x0F
|-
|-
| 7  
| 7  
| QA Flag Token
| -
| 0x00069020  
| 0x00069020  
| 0x50
| 0x50
| 0x10
|-
|-
| 8  
| 8  
| Trace Level
| -
| 0x00069070  
| 0x00069070  
| 0x8
| 0x8
| 0x11
|}
|}


Line 3,593: Line 3,503:
=== appldr  ===
=== appldr  ===


*'''appldr''' is used for decryption of SELFs or EDATs
*'''appldr''' is used for decryption of SELFs  
*HV call '''lv1_authenticate_program_segment''' loads '''appldr'''
*HV call '''lv1_authenticate_program_segment''' loads '''appldr'''


Line 3,602: Line 3,512:
==== Loading appldr  ====
==== Loading appldr  ====


*64 bit memory address of '''appldr''' is written into 32 bit SPU register '''SPU_In_Mbox'''  
*64 bit memory address of '''isoldr''' is written into 32 bit SPU register '''SPU_In_Mbox'''  
*'''metldr''' is loaded
*'''metldr''' is loaded


Line 3,989: Line 3,899:
offset 0x90 - LPAR image path  
offset 0x90 - LPAR image path  


offset 0x1C0 - LPAR ability (8 bytes)
offset 0x1C0 - LPAR ability (8 bytes)  


=== Types of System Manager  ===
=== Types of System Manager  ===
Line 4,449: Line 4,359:
| 0xA  
| 0xA  
| 0x1B6  
| 0x1B6  
| Makes a triple beep
| Makes a double beep
|-
|-
| 0x29  
| 0x29  
Line 4,461: Line 4,371:
| Makes a continuous beep
| Makes a continuous beep
|}
|}
field 1 seems relative to beep tone, as 0x25 sounds different


=== Active System Managers in HV dump 3.15  ===
=== Active System Managers in HV dump 3.15  ===
Line 4,656: Line 4,565:
| 0x8000  
| 0x8000  
| 8  
| 8  
| 0x8001 - 0x8005
|  
| [[Updater_Frontend|Updater Frontend]]
|  
|-
|-
| 0x9000  
| 0x9000  
Line 4,666: Line 4,575:
| 0x10000  
| 0x10000  
| 0x23  
| 0x23  
| 0x10001-0x10007
| -  
| [[SB_Manager|SBM (South Bridge Manager)]]
| -
|-
|-
| 0x11000  
| 0x11000  
Line 4,702: Line 4,611:
| 0x16  
| 0x16  
| 0x22001 - 0x22004
| 0x22001 - 0x22004
| [[Factory_Data_Manager|Factory Data Manager]]
|  
|-
|-
| 0x24000  
| 0x24000  
Line 4,740: Line 4,649:
     uint32_t retval;
     uint32_t retval;
     uint8_t res[4];
     uint8_t res[4];
     uint64_t laid;            /* LPAR Authority ID */
     uint64_t laid;            /* LPAR authority id */
     uint64_t paid;            /* Program Authority ID */
     uint64_t paid;            /* Program authority id */
}
}
</pre>
</pre>
Line 4,772: Line 4,681:
*The size of the body depends on a used service.
*The size of the body depends on a used service.


= LPAR Memory Management =
== 0x3000 - Secure RTC ==


== Memory Region class ==
{| class="wikitable FCK__ShowTableBorders"
|-
! Packet ID
! Description
|-
| 0x3001
| Set RTC
|-
| 0x3002
| Get Time
|-
| 0x3003
| Set Time
|}


This class is the base class for different memory region types.  
*Secure RTC reads LAIDs and PAIDs that are allowed to access Secure RTC service from '''DEFAULT.SPP''' segment '''SCE_CELLOS_SS_SECURE_RTC'''.
*vsh uses syscall 0x362 (866) to communicate.


=== vtable ===
=== 0x3001 - Set RTC ===


0x003578B0 (3.15)
*This service uses '''SC Manager Set RTC (0x9008)''' service.


=== Member variables ===
=== 0x3002 - Get Time ===


offset 0x40 - pointer to LPAR object that owns this memory region
*This service uses '''SC Manager Get Time (0x9009)''' service.


offset 0x48 - type of memory region (8 bytes)
=== 0x3003 - Set Time  ===


offset 0x50 - LPAR start address of memory region
*This service uses '''SC Manager Set Time (0x900A)''' service.


offset 0x58 - size of memory region (8 bytes)
== 0x5000 - Storage Manager  ==


offset 0x60 - flags (8 bytes)  
{| class="wikitable FCK__ShowTableBorders"
|-
! Packet ID
! Description
|-
| 0x5001
| Set Encdec Key
|-
| 0x5002
| Set/Delete ATA (Encdec) Key
|-
| 0x5003
| Get Random Number
|-
| 0x5004
| Authenticate BD Drive
|-
| 0x5005
| Authenticate PS2 Disc
|-
| 0x5006
| Get Secure Firmware Version
|-
| 0x5007
| HW disc auth emu
|-
| 0x5008
| HW mc
|-
| 0x5009
| HW me auth header
|-
| 0x500A
| HW me dec block
|}


offset 0xA0 - log2 of page size
*Storage Manager service is used e.g. by '''syscall 864''' and '''syscall SYS_SS_MEDIA_ID'''
*GameOS's VSH uses '''syscall 864'''
*Storage Manager executes SPU module '''sb_iso_spu_module.self'''
*Storage Manager communicates with devices '''/dev/encdec0''' and '''/dev/rbd0''' from LPAR 1
*2nd value from repository node '''bus1.id''' is used by Storage Manager
*Storage Manager communicates with '''sb_iso_spu_module.self''' through a shared DMA memory buffer and SPU MBox
*'''EID4''' data is passed to '''sb_iso_spu_module.self''' module.


=== Generating New LPAR Memory Region Addresses ===
==== SB Isolation DMA Buffer Header  ====
<pre>struct sb_iso_header
{
    u32 seqno;
    u32 mbmsg;
    u32 cmd;
    u32 cmd_size;
    u8 cmd_data[0];
}
</pre>
*seqno has values 0x03 to 0x08. It is incremented when sending and receiving data from the spu.


generate_new_lpar_mem_region_address(?, memory region size, log2(page size), ?, ?) - 002C82E8 (3.15)
=== 0x5001 - Set Encdec Key  ===


generate_new_lpar_mem_region_address - 002C6570 (3.41)
* This service allows you to set ENCDEC keys with index '''0xC - 0xF'''
* '''By patching HV process 6 it would be possible to set default ENCDEC key (used for HDD encryption) to a value different from the default one !!! It means we could encrypt our HDDs with a key we want !!!'''
* The service accepts 2 parameters: a key (max 24 bytes) and a key length (in bits)
* Valid key length values: '''0x40''', '''0x80''' and '''0xC0'''
* The service returns the ENCDEC key index used for the key
* '''ENCDEC supports upto 16 keys !!!'''
* Storage Manager in HV process 6 has a bit mask of size 2 bytes which indicates which keys are used currently.
Per default, keys with index 0x0 - 0xB are not free. But we could patch it also.


*The function returns a new LPAR memory region address.
=== 0x5002 - Set/Delete ATA (Encdec) Key  ===
*This method is used e.g. in all HV calls which create any kind of memory regions, e.g. '''lv1_allocate_memory''', '''lv1_map_htab''', '''lv1_undocumented_function_114''', '''lv1_construct_logical_spe''', '''lv1_map_device_mmio_region''' or '''syscall 0x10040'''.


==== Encoding LPAR Memory Region Start Addresses and Sizes ====
*Sets/Deletes ATA (Encdec) Key
*The service has only one parameter of size 8 bytes: '''0x100 - Set ATA Key''' and '''0x110 - Delete ATA Key'''.
*This service is used e.g. by '''System Manager''' in HV Process 9 during LPAR booting.
*SPM doesn't allow GameOS to use this service.
*3 possible key lengths: 0x40, 0x80 and 0xC0
*This service communicates with '''/dev/encdec0''' device.
*The service uses ENCDEC device commands '''EdecKgen1 (0x81)''', '''EdecKgen2 (0x82)''', '''EdecKset (0x83)''' and '''EdecKgenFlash (0x84)'''.
*This service communicates also with '''/dev/rbd0''' device.
*I guess that the ATA key is stored encrypted in '''EID4''' data.
*This service is used by LPAR Manager in HV Process 9 during LPAR 2 loading.
* I tested this service on Linux with '''ps3dm-utils''' and after deleting ATA key the sectors on VFLASH or HDD were NOT decrypted by HV
* After setting ATA key again, the sectors were encrypted/decrypted by HV again
* '''Deleting an ENCDEC key is nothing more than setting key with all bytes set to 0x0 !!!'''
* On old PS3s which didn't use HDD for VFLASH, HV uses 2 ENCDEC keys, one for HDD (key index 1) and one for VFLASH (key index 0). On new PS3s which use HDD for VFLASH, only one ENCDEC key is used (key index 1).


*Size of LPAR memory region is encoded in the LPAR memory region start address.
==== Service Parameter Table ====
*That is why e.g. the LPAR Memory Region Start Addresses of LPAR Memory Region of size 4096 byte begin with '''0x300000000000''', '''0x300000000000 >> 42 = 0xC = log2(4096)'''.
*Each LPAR has a counter (8 bytes) which is incremented by 1 every time a new LPAR Memory Region is created.
*Before incrementing, the counter is shifted left by '''log2(LPAR Memory Region Size)''' and ored with '''log2(LPAR Memory Region Size) << 42'''.


LPAR Memory Region Start Address >> 42 = log2(LPAR Memory Region Size)
{| class="wikitable FCK__ShowTableBorders"
|-
! Service Parameter
! Description
|-
| 0xC - 0xF
| Delete Encdec Key
|-
| 0x10*
| Set ATA Key (index 1)
|-
| 0x11*
| Delete ATA Key (index 1)
|}


  LPAR Memory Region Start Address = (log2(LPAR Memory Region Size) << 42) |
=== 0x5003 - Get Random Number ===
    (counter << log2(LPAR Memory Region Size))


===== LPAR Memory Region Address Counter =====
*I have got access to Get Random Number service through DM and tested it with PSGroove
*The service returns 192-bit random numbers
*It has no input parameters except those in SS packet header
*Storage Manager communicates with device '''/dev/encdec0'''.
*This service is used e.g. by USB Dongle Authenticator to generate the body of a challenge or by GameOS to generate hardware random numbers.


*LPAR Memory Region Address Counter is stored at address: '''0x38(LPAR ptr) + 0x9E8'''
=== 0x5004 - Authenticate BD Drive  ===
*LPAR1's Memory Region Address Counter is at address '''0x00677A48''' in HV dump 3.15
*LPAR2's Memory Region Address Counter is at address '''0x007632D8''' in HV dump 3.15
*LPAR1's Memory Region Address Counter is at address '''0x00677A48''' in HV dump 3.41
*LPAR2's Memory Region Address Counter is at address '''0x00161E68''' in HV dump 3.41


== Physical Memory Region class  ==
*Used by LPAR Manager in HV Process 9 during LPAR 2 loading and unloading.
*Used by SLL Load GOS service (0x14004) in HV Process 3 during PS2EMU loading and by SLL Unload GOS service (0x14005) during PS2EMU unloading.
*The service expects one additional parameter.
*The service is used during loading of LPAR 2 to authenticate BD drive and during unloading LPAR 2 to reset BD drive.
*The service uses isolated SPU module '''sv_iso_spu_module.self''' for BD drive authentication.
*The service communicates with LPAR 1 device '''/dev/rbd0''' through ATAPI interface.


This type of memory region is created e.g. in '''lv1_allocate_memory''' HV call or in '''syscall 0x10000'''.
==== Service Parameter Table ====


=== vtable  ===
{| class="wikitable FCK__ShowTableBorders"
|-
! Service Parameter
! Description
|-
| 0x01
| (unknown)
|-
| 0x02
| Used by SLL service 0x14004 during PS2EMU loading
|-
| 0x1E
| Used by SLL service 0x14005 during PS2EMU unloading
|-
| 0x29
| Reset BD Drive
|-
| 0x46
| Authenticate BD Drive
|-
| 0x52
| Authenticate PS2 Disc Insert
|}


0x00357D08 (3.15)
=== 0x5005 - PS2 Disc Authenticate  ===


=== Member variables ===
=== 0x5006 - Get Version ===


offset 0xB0 - pointer to object that stores a list of addresses of physical pages owned by this memory region
* By default not accessible from GameOS. But it can be enabled by patching Dispatcher Manager.


offset 0xB8 - pointer to LPAR object that owns this memory region
=== 0x5007 - Control BD Drive  ===


offset 0xC0 - reference counter (8 bytes)
*Used by GameOS to authenticate discs and for BD emulation.


=== Objects  ===
==== Service Parameter Table ====
 
Here is the list of physical memory region objects i found in HV 3.15.


{| class="wikitable FCK__ShowTableBorders"
{| class="wikitable FCK__ShowTableBorders"
|-
|-
! Address in HV dump
! Service Parameter
! LPAR id
! Description
! LPAR Start Address
|-
! Size
| 0x0D
! Flags
| -
! log2(Page Size)
! Physical Page Addresses
|-
|-
| 0x006B5510
| 0x3F
| 1
| -
| 0x300000001000
| 0x1000
| 0x0
| 0xC
| 0x672000
|-
|-
| 0x006B5E50
| 0x41
| 1
| -
| 0x440000040000
| 0x20000
| 0x0
| 0x11
| 0x6C0000
|-
|-
| 0x006B6980
| 0x43
| 1
| -
| 0x440000060000
| 0x20000
| 0x0
| 0x11
| 0x6E0000
|-
|-
| 0x006B7F00
| 0x46
| 1
| -
| 0x400000040000
| 0x10000
| 0x0
| 0x10
| 0x100000
|-
|-
| 0x003A80F0
| 0x4B
| 2
| media id?
| 0x6C0058000000
| 0x7000000
| 0x4
| 0x18
| 0x1000000 - 0x7000000
|-
|-
| 0x003BE800
| 0x51
| 2
| -
| 0x300000047000
| 0x1000
| 0x0
| 0xC
| 0x1FA000
|-
|-
| 0x006BDAA0
| 0x52
| 2
| -
| 0x0
|-
| 0x8000000
| 0x53
| 0x8
| PS3 Disc Insert
| 0x1B (single huge page)
|-
| 0x8000000
| 0xA3
| BD emu
|-
| 0xA5
| BD emu
|-
| 0xA7
| BD emu
|-
| 0xAA
| BD emu
|}
|}


So, Linux kernel should be located at physical address 0x8000000 and Linux syscall handler at 0x8000C00. Too bad that the HV dump is not large enough.
=== 0x5008 - HW mc ===
 
=== GameOS Physical Memory Regions ===


*GameOS allocates nearly all physical memory of PS3 for itself&nbsp;!!! That is why new HV calls '''lv1_allocate_memory''' with large memory region sizes will fail.
==== Service Parameter Table ====
*So when someone wants a large piece of physical memory, he can borrow it from GameOS's LPAR memory region that starts at '''0x700020000000'''. It can be used for example to send update packages to Update Manager which are very large.
 
Here is the list of physical memory regions of GameOS i found in HV 3.41:


{| class="wikitable FCK__ShowTableBorders"
{| class="wikitable FCK__ShowTableBorders"
|-
|-
! Start Address
! Service Parameter
! Size
! Description
! Access Right
! Max Page Size
! Flags
! Real Addresses
|-
|-
| 0x0
| 0x01
| 0x1000000
|  
| 0x3
| 0x18
| 0x8
| 0x1000000 - 0x1FFF000
|-
|-
| 0x500000300000
| 0x02
| 0xA0000
|  
| 0x3
| 0x10
| 0x8
| 0x380000 - 0x38F000, 0x3B0000 - 0x3BF000, 0x1E0000 - 0x1FF000, 0x3C0000 - 0x3FF000, 0xFF00000 - 0xFF1F000
|-
|-
| 0x700020000000
| 0xE900000 (huge memory region)
| 0x3
| 0x14
| 0x0
| 0x400000 - 0x5FF000, 0x800000 - 0xFFF000, 0x2000000 - 0xFEFF000
|}
|}


== HTAB Memory Region class  ==
== 0x6000 - Update Manager ==
 
This memory region is created when a HTAB is mapped into LPAR's address space. It's created in '''lv1_map_htab''' HV call.
 
=== vtable  ===
 
0x00357C98 (3.15)
 
=== Member variables  ===
 
offset 0xB0 - pointer to VAS object that owns the HTAB
 
=== Objects ===
 
Here is the list of HTAB memory region objects i found in HV 3.15.


{| class="wikitable FCK__ShowTableBorders"
{| class="wikitable FCK__ShowTableBorders"
|-
|-
! Address in HV dump
! Packet ID
! LPAR id
! Description
! VAS id
|-
! LPAR Start Address
| 0x6001
! Size
| Update Package Tophalf
! Flags
|-
! log2(Page Size)
| 0x6002
| Inspect Package Tophalf
|-
| 0x6003
| Get Package Info
|-
| 0x6004
| Get Fix Instruction
|-
| 0x6005
| Extract Package Tophalf
|-
| 0x6006
| Get Extract Package
|-
| 0x6007
| Check Integrity too
|-
| 0x6008
| Check Integrity too
|-
| 0x6009
| Get Token Seed
|-
| 0x600A
| Set Token
|-
| 0x600B
| Read EPROM
|-
| 0x600C
| Write EPROM
|-
| 0x600D
| Get Status
|-
| 0x600E
| Allocate Buffer
|-
| 0x600F
| Release Buffer
|-
|-
| 0x001FE0F0
| 0x6010
| 2
| Check Integrity
| 3
| 0x500000C00000
| 0x100000
| 0xC000000000000000
| 0x14
|-
|-
| 0x003BD850
| 0x6011
| 2
| Get Applicable Version
| 3
| 0x500004300000
| 0x100000
| 0xC000000000000000
| 0x14
|-
|-
| 0x003BDEA0
| 0x6012
| 2
| (Re?)Allocate Buffer
| 3
| 0x500004500000
| 0x100000
| 0xC000000000000000
| 0x14
|}
|}


=== GameOS HTAB ===
*Update Manager service is accessed by GameOS '''syscall 863'''
 
=== 0x6001 - Update Package Tophalf  ===
 
*The result of the request can be checked by reading the value of repository node '''ss.update.request.&lt;Request ID&gt;''' periodically
 
=== 0x6002 - Inspect Package Tophalf ===


*HTAB of GameOS is already mapped into address space of GameOS so that is why HV call '''lv1_map_htab''' will fail until you unmap it with '''lv1_unmap_htab'''  
*I have got access to this service through DM and tested it with PSGroove
*Effective address of GameOS HTAB is '''0x800000000F000000'''  
*This service can tell you if a package can be installed or not, the service just checks a package but does not install it
*Virtual address of GameOS HTAB is '''0xF000000'''  
*'''Packages can be updated without GameOS&nbsp;!!! I'm using only HV calls and communicate directly with Dispatcher Manager and Update Manager'''
*Size of GameOS HTAB is '''0x40000'''  
*I just sent a whole SCE package to GameOS through network, created a LPAR memory region and stored the file there
*GameOS HTAB supports large pages of size '''64K''' and '''1M'''  
*It expects a SCE package that can be easily extracted from '''PUP file'''
*GameOS HTAB can be easily dumped by reading 0x40000 bytes at EA 0x800000000F000000
*The data of SCE package can be passed either in SS packet itself or through LPAR memory of requester
*When the data of SCE package is too large for SS packet (SS packets are sent through DM, GameOS and DM communicate through VUART that has only 0x800 bytes buffer) then the data of SCE package has to be passed through GameOS LPAR memory. The requester sends a vector of LPAR memory addresses where the data of SCE package is stored and Update Manager maps it into the address space of Process 6
*E.g. '''Revoke List''' packages can be sent in SS packets because they are small (about 0x200 bytes). All other packages are too big to sent them in SS packets
*The service is actually split into 2 halfs: '''Top-Half''' and '''Bottom-Half'''  
*The '''Top-Half''' is executed synchronously with service request and it sends a reply to the requester
*In the reply sent by '''Top-Half''' a '''Request ID''' (8 bytes) is returned to the requester
*'''Request ID''' is calculated by using '''SHA-1'''  
*After the '''Top-Half''' is done, a reply is sent to the requester but the service just checked some input parameter upto now and the passed SCE package was not really checked yet
*The '''Bottom-Half''' is called asynchronously to the request, it does the real job, it checks the passed SCE package.
*The result of the request can be checked by reading the value of repository node '''ss.inspect.request.&lt;Request ID&gt;''' periodically
*I successfully tested this service with '''RL_FOR_PROGRAM.img''' from '''3.50 PUP file''' and the service returned '''Success''', so theoretically i could install this package on my PS3. But of course i want to downgrade and NOT to upgrade.


=== GameOS SLB ===
==== Inspect Package Tophalf Return Values ====


Here is the dump of SLB entries from GameOS 3.41:
{| class="wikitable FCK__ShowTableBorders"
<pre>0x8000000008000000  0x0000000000000500
|-
0x8000000208000000  0x0000000000020500
! Error Code
0x8000000300000000  0x0000000000030510
! Description
0x0000000000000000  0x0000000000000000
|-
0x0000000080000000  0x0000000000038C00
| 0x00000000
0x00000000A0000000  0x000000000003AC00
| Success
0x00000000C0000000  0x000000000003CC00
|-
0x0000000000000000  0x0000000000000000
| 0x00000013
0x0000000000000000  0x0000000000000000
| Same Version/Older Version
0x0000000000000000  0x0000000000000000
|-
0x0000000000000000  0x0000000000000000
| 0x00000014
0x0000000000000000  0x0000000000000000
| -
0x0000000000000000  0x0000000000000000
|}
0x0000000000000000  0x0000000000000000
0x0000000000000000  0x0000000000000000
0x0000000000000000  0x0000000000000000
0x0000000000000000  0x0000000000000000
0x0000000000000000  0x0000000000000000
0x0000000000000000  0x0000000000000000
0x0000000000000000  0x0000000000000000
0x0000000000000000  0x0000000000000000
0x0000000000000000  0x0000000000000000
0x0000000000000000  0x0000000000000000
0x0000000000000000  0x0000000000000000
0x0000000000000000  0x0000000000000000
0x0000000000000000  0x0000000000000000
0x0000000000000000  0x0000000000000000
0x0000000000000000  0x0000000000000000
0x0000000000000000  0x0000000000000000
0x0000000000000000  0x0000000000000000
0x0000000000000000  0x0000000000000000
0x0000000000000000  0x0000000000000000
0x8000000010057960  0x8000000000313E78
0x8000000010057940  0x0000000000000000
0x800000000001B698  0x0000000000000000
0x8000000010057930  0x8000000000490708
0x80000000002B6C68  0x80000000003DE928
0x8000000010057EC0  0x80000000003DE920
0x0000000000000000  0x8000000000309810
0x80000000004B3000  0x0000000000000000
0x8000000010057CC0  0x0000000000000000
0x80000000004AF000  0x80000000004E1F00
0x80000000100579C8  0x80000000100579C0
0x80000000100579E0  0x2400002200000000
0x80000000004CF5B0  0x8000000200012000
0x80000000100579F8  0x80000000100579F0
0x8000000010057A10  0x80000000004A3A00
0x80000000004CF5B0  0x80000000004C8D00
0x800000000001BF6C  0x80000000004CD400
0x800000000001B698  0x80000000004C8100
0x80000000100579D0  0x80000000004B48C0
0x0000000000001C08  0x0000000000000000
0x8000000010057A78  0x8000000010057A70
0x8000000010057A90  0x0000000000000000
0x80000000004CF90C  0x0000000000000000
0x0000000000000000  0x8000000010057A80
0x8000000010057A90  0x8000000000309810
0x80000000004CF62C  0x0000000000000000
0x8000000010057CC0  0x0000000000000000
0x80000000004AF000  0x80000000004B48C0
0x00004000001C0000  0x0000000000000001
0x00000000D0000000  0x0000A8E3EE7D10DA
0x0000000000000000  0x0000000000000000
0x80000000004D8088  0x80000000004D9000
</pre>
== SPE MMIO Memory Region class  ==


This type of memory region represents MMIO memory region of a SPE. It's created e.g. in '''lv1_construct_logical_spe''' or in '''syscall 0x10040'''.
=== 0x6003 - Get Package Info  ===


=== vtable  ===
*I have got access to this service through DM and tested it with PSGroove
*The service expects one additional parameter: package type (valid values are 1-9)
*The service returns the version (8 bytes) of a package type installed


0x003583F8 (3.15)
Here are the versions of packages installed on my PS3:
 
=== Member variables  ===
 
=== Objects  ===
 
Here is the list of SPE memory region objects i found in HV 3.15.


{| class="wikitable FCK__ShowTableBorders"
{| class="wikitable FCK__ShowTableBorders"
|-
|-
! Address in HV dump
! Package Type
! LPAR id
! Returned Version
! SPE
! Description
! LPAR Start Address
! Package Name in PUP File
! Size
! Physical Address
! Flags
! log2(Page Size)
|-
|-
| 0x003ABC20
| 2
| 1  
| 1  
| 0x4C0000880000
| 0x0003004100000000
| 0x80000
| Core OS Package
| 0x20000080000
| CORE_OS_PACKAGE.pkg
| 0xA000000000000000
| 0xC
|-
|-
| 0x003AAD70
| 2
| 2  
| 2  
| 0x4C0000980000
| 0x0003004100000000
| 0x80000
| Revoke List Package for Program
| 0x20000100000
| RL_FOR_PROGRAM.img
| 0xA000000000000000
| 0xC
|-
|-
| 0x003A8880
| 2
| 3  
| 3  
| 0x4C0000780000
| 0x0002003000000000
| 0x80000
| Revoke List Package for Package
| 0x20000180000
| RL_FOR_PACKAGE.img
| 0xA000000000000000
| 0xC
|-
|-
| 0x003B4F70
| 2
| 4  
| 4  
| 0x4C0000A80000
| 0xDEADBEAFFACEBABE
| 0x80000
| -
| 0x20000200000
| -
| 0xA000000000000000
| 0xC
|-
|-
| 0x003AB700
| 2
| 5  
| 5  
| 0x4C0000680000
| 0xDEADBEAFFACEBABE
| 0x80000
| -
| 0x20000280000
| -
| 0xA000000000000000
| 0xC
|-
|-
| 0x003B5BE0
| 2
| 6  
| 6  
| 0x4C0000B80000
| 0x0003004000000000
| 0x80000
| BD Firmware Package
| 0x20000300000
| BDIT_FIRMWARE_PACKAGE.pkg, BDPT_FIRMWARE_PACKAGE_*.pkg
| 0xA000000000000000
|-
| 0xC
| 7
| Invalid Parameter
| Bluetooth Firmware, dev_flash tarballs
| BLUETOOTH_FIRMWARE.pkg, dev_flash, dev_flash3
|-
| 8
| Invalid Parameter
| -
| -
|-
| 9
| Invalid Parameter
| SC Firmware Package
| SYS_CON_FIRMWARE_*.pkg
|}
|}


== SPE Shadow Registers Memory Region class ==
==== Decrypting and Extracting Packages with spu_pkg_rvk_verifier.self  ====
 
*I have managed to decrypt and extract '''Revoke List Packages 3.41 and 3.50''' by using SPE HV calls and '''spu_pkg_rvk_verifier.self'''
*Important: Parameters to SPU module shuold be aligned, i used cache line alignment, don't know exactly alignment requerements. Or else some very strange things could happen. E.g SYSCON firmware was only partially decrypted when i used no cache line alignment.
*I have also managed to decrypt and extract '''Core OS Packages 1.10, 1.18 Debug, 2.40, 2.80, 3.15, 3.41 and 3.50''' by using SPE HV calls and '''spu_pkg_rvk_verifier.self''' but it's compressed with '''zlib'''.Update Manager in Process 6 from 3.15 uses '''zlib 1.2.3 inflate''' to decompress it after it was decrypted and then it stores the data to flash memory.
*I decompressed the decrypted Core OS Packages with zlib.
*I am able now to decrypt and decompress all Core OS Packages
*'''The decrypted and decompressed package CORE_OS_PACKAGE.pkg looks exactly like it's stored on flash.'''
*I also decrypted BD Firmwares '''BDIT_FIRMWARE_PACKAGE.pkg''' and '''BDPT_FIRMWARE_PACKAGE.pkg''' successfully. The firmware is not compressed.
*I also decrypted Bluetooth Firmware '''BLUETOOTH_FIRMWARE.pkg''' successfully. The firmware is encrypted and compressed.
*I also managed to decrypt System Controller Firmware '''SYS_CON_FIRMWARE_01050101.pkg''' from 3.41.
*Core OS Package 3.50 contains a new isolated SPU module that is not contained in older versions. The SPU module is '''manu_info_spu_module.self'''.
*Here links to PS3 Firmwares: [http://forums.penhacks.net/Thread-ALL-PS3-Firmware-to-date] and [http://www.ps3-hacks.com/category/3]
 
===== RL_FOR_PROGRAM.img 3.41  =====
<pre>Offset      0  1  2  3  4  5  6  7  8  9  A  B  C  D  E  F
 
00000200  00 00 00 04 00 00 00 01  00 03 00 41 00 00 00 00  ...........A....
00000210  00 00 00 06 00 00 00 00  00 00 00 00 00 00 00 00  ................
00000220  00 00 00 03 00 00 00 01  00 03 00 41 00 00 00 00  ...........A....
00000230  00 00 00 00 00 00 00 02  FF FF FF FF FF FF FF FF  ........ÿÿÿÿÿÿÿÿ
00000240  00 00 00 04 00 00 00 01  00 03 00 41 00 00 00 00  ...........A....
00000250  10 70 00 05 FF 00 00 01  FF FF FF FF FF FF FF FF  .p..ÿ...ÿÿÿÿÿÿÿÿ
00000260  00 00 00 04 00 00 00 01  00 03 00 41 00 00 00 00  ...........A....
00000270  10 70 00 05 FE 00 00 01  FF FF FF FF FF FF FF FF  .p..þ...ÿÿÿÿÿÿÿÿ
00000280  00 00 00 04 00 00 00 01  00 03 00 41 00 00 00 00  ...........A....
00000290  10 70 00 05 FD 00 00 01  FF FF FF FF FF FF FF FF  .p..ý...ÿÿÿÿÿÿÿÿ
000002A0  00 00 00 04 00 00 00 01  00 03 00 41 00 00 00 00  ...........A....
000002B0  10 70 00 05 FC 00 00 01  FF FF FF FF FF FF FF FF  .p..ü...ÿÿÿÿÿÿÿÿ
000002C0  00 00 00 04 00 00 00 03  00 01 00 00 00 00 00 00  ................
000002D0  10 70 00 04 00 00 00 01  FF FF FF FF FF FF FF FF  .p......ÿÿÿÿÿÿÿÿ
</pre>
===== RL_FOR_PROGRAM.img 3.50  =====
<pre>Offset      0  1  2  3  4  5  6  7  8  9  A  B  C  D  E  F
 
00000200  00 00 00 04 00 00 00 01  00 03 00 50 00 00 00 00  ...........P....
00000210  00 00 00 06 00 00 00 00  00 00 00 00 00 00 00 00  ................
00000220  00 00 00 03 00 00 00 01  00 03 00 50 00 00 00 00  ...........P....
00000230  00 00 00 00 00 00 00 02  FF FF FF FF FF FF FF FF  ........ÿÿÿÿÿÿÿÿ
00000240  00 00 00 04 00 00 00 01  00 03 00 50 00 00 00 00  ...........P....
00000250  10 70 00 05 FF 00 00 01  FF FF FF FF FF FF FF FF  .p..ÿ...ÿÿÿÿÿÿÿÿ
00000260  00 00 00 04 00 00 00 01  00 03 00 50 00 00 00 00  ...........P....
00000270  10 70 00 05 FE 00 00 01  FF FF FF FF FF FF FF FF  .p..þ...ÿÿÿÿÿÿÿÿ
00000280  00 00 00 04 00 00 00 01  00 03 00 50 00 00 00 00  ...........P....
00000290  10 70 00 05 FD 00 00 01  FF FF FF FF FF FF FF FF  .p..ý...ÿÿÿÿÿÿÿÿ
000002A0  00 00 00 04 00 00 00 01  00 03 00 50 00 00 00 00  ...........P....
000002B0  10 70 00 05 FC 00 00 01  FF FF FF FF FF FF FF FF  .p..ü...ÿÿÿÿÿÿÿÿ
000002C0  00 00 00 04 00 00 00 03  00 01 00 00 00 00 00 00  ................
000002D0  10 70 00 04 00 00 00 01  FF FF FF FF FF FF FF FF  .p......ÿÿÿÿÿÿÿÿ
</pre>
===== RL_FOR_PACKAGE.img 3.41  =====
<pre>Offset      0  1  2  3  4  5  6  7  8  9  A  B  C  D  E  F
 
00000200  00 00 00 03 00 00 00 02  00 01 00 00 00 00 00 00  ................
00000210  00 00 00 01 00 00 00 00  00 00 00 00 00 00 00 00  ................
00000220  00 00 00 01 00 00 00 00  00 00 00 01 00 00 00 02  ................
00000230  00 00 00 08 00 05 00 00  00 00 00 00 00 00 00 00  ................
</pre>
===== RL_FOR_PACKAGE.img 3.50  =====
<pre>Offset      0  1  2  3  4  5  6  7  8  9  A  B  C  D  E  F
 
00000200  00 00 00 03 00 00 00 02 00 01 00 00 00 00 00 00  ................
00000210  00 00 00 01 00 00 00 00  00 00 00 00 00 00 00 00  ................
00000220  00 00 00 01 00 00 00 00  00 00 00 01 00 00 00 02  ................
00000230  00 00 00 08 00 05 00 00  00 00 00 00 00 00 00 00  ................
</pre>
===== CORE_OS_PACKAGE.pkg 3.15  =====
 
Here is a piece of data from decrypted and decompressed package.
<pre>Offset      0  1  2  3  4  5  6  7  8  9  A  B  C  D  E  F
 
00000000  00 00 00 01 00 00 00 17  00 00 00 00 00 6F FF E0  .............oÿà
00000010  00 00 00 00 00 00 04 60  00 00 00 00 00 04 00 00  .......`........
00000020  63 72 65 73 65 72 76 65  64 5F 30 00 00 00 00 00  creserved_0.....
00000030  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  ................
00000040  00 00 00 00 00 04 04 60  00 00 00 00 00 00 00 08  .......`........
00000050  73 64 6B 5F 76 65 72 73  69 6F 6E 00 00 00 00 00  sdk_version.....
00000060  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  ................
00000070  00 00 00 00 00 04 04 80  00 00 00 00 00 01 E5 CC  .......€......åÌ
00000080  6C 76 31 6C 64 72 00 00  00 00 00 00 00 00 00 00  lv1ldr..........
00000090  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  ................
000000A0  00 00 00 00 00 05 EA 80  00 00 00 00 00 01 6D A0  ......ê€......m&nbsp;
000000B0  6C 76 32 6C 64 72 00 00  00 00 00 00 00 00 00 00  lv2ldr..........
000000C0  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  ................
000000D0  00 00 00 00 00 07 58 80  00 00 00 00 00 01 2E 44  ......X€.......D
000000E0  69 73 6F 6C 64 72 00 00  00 00 00 00 00 00 00 00  isoldr..........
000000F0  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  ................
00000100  00 00 00 00 00 08 87 00  00 00 00 00 00 01 DA E4  ......‡.......Úä
00000110  61 70 70 6C 64 72 00 00  00 00 00 00 00 00 00 00  appldr..........
00000120  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  ................
00000130  00 00 00 00 00 0A 61 E4  00 00 00 00 00 00 FA CC  ......aä......úÌ
00000140  73 70 75 5F 70 6B 67 5F  72 76 6B 5F 76 65 72 69  spu_pkg_rvk_veri
00000150  66 69 65 72 2E 73 65 6C  66 00 00 00 00 00 00 00  fier.self.......
00000160  00 00 00 00 00 0B 5C B0  00 00 00 00 00 00 5C 94  ......\°......\”
00000170  73 70 75 5F 74 6F 6B 65  6E 5F 70 72 6F 63 65 73  spu_token_proces
00000180  73 6F 72 2E 73 65 6C 66  00 00 00 00 00 00 00 00  sor.self........
00000190  00 00 00 00 00 0B B9 44  00 00 00 00 00 00 65 D0  ......¹D......eÐ
000001A0  73 70 75 5F 75 74 6F 6B  65 6E 5F 70 72 6F 63 65  spu_utoken_proce
000001B0  73 73 6F 72 2E 73 65 6C  66 00 00 00 00 00 00 00  ssor.self.......
000001C0  00 00 00 00 00 0C 1F 14  00 00 00 00 00 01 53 2C  ..............S,
000001D0  73 63 5F 69 73 6F 2E 73  65 6C 66 00 00 00 00 00  sc_iso.self.....
000001E0  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  ................
000001F0  00 00 00 00 00 0D 72 40  00 00 00 00 00 00 44 98  [email protected]˜
00000200  61 69 6D 5F 73 70 75 5F  6D 6F 64 75 6C 65 2E 73  aim_spu_module.s
00000210  65 6C 66 00 00 00 00 00  00 00 00 00 00 00 00 00  elf.............
00000220  00 00 00 00 00 0D B6 D8  00 00 00 00 00 00 D7 F0  ......¶Ø......×ð
00000230  73 70 70 5F 76 65 72 69  66 69 65 72 2E 73 65 6C  spp_verifier.sel
00000240  66 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  f...............
00000250  00 00 00 00 00 0E 8E C8  00 00 00 00 00 00 80 8C  ......ŽÈ......€Œ
00000260  6D 63 5F 69 73 6F 5F 73  70 75 5F 6D 6F 64 75 6C  mc_iso_spu_modul
00000270  65 2E 73 65 6C 66 00 00  00 00 00 00 00 00 00 00  e.self..........
00000280  00 00 00 00 00 0F 0F 54  00 00 00 00 00 00 88 B8  .......T......ˆ¸
00000290  6D 65 5F 69 73 6F 5F 73  70 75 5F 6D 6F 64 75 6C  me_iso_spu_modul
000002A0  65 2E 73 65 6C 66 00 00  00 00 00 00 00 00 00 00  e.self..........
000002B0  00 00 00 00 00 0F 98 0C  00 00 00 00 00 00 C0 78  ......˜.......Àx
000002C0  73 76 5F 69 73 6F 5F 73  70 75 5F 6D 6F 64 75 6C  sv_iso_spu_modul
000002D0  65 2E 73 65 6C 66 00 00  00 00 00 00 00 00 00 00  e.self..........
000002E0  00 00 00 00 00 10 58 84  00 00 00 00 00 00 5D B0  ......X„......]°
000002F0  73 62 5F 69 73 6F 5F 73  70 75 5F 6D 6F 64 75 6C  sb_iso_spu_modul
00000300  65 2E 73 65 6C 66 00 00  00 00 00 00 00 00 00 00  e.self..........
00000310  00 00 00 00 00 10 B6 34  00 00 00 00 00 00 22 A0  ......¶4......"&nbsp;
00000320  64 65 66 61 75 6C 74 2E  73 70 70 00 00 00 00 00  default.spp.....
00000330  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  ................
00000340  00 00 00 00 00 10 D9 00  00 00 00 00 00 12 B1 70  ......Ù.......±p
00000350  6C 76 31 2E 73 65 6C 66  00 00 00 00 00 00 00 00  lv1.self........
00000360  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  ................
00000370  00 00 00 00 00 23 8A 80  00 00 00 00 00 03 E8 28  .....#Š€......è(
00000380  6C 76 30 00 00 00 00 00  00 00 00 00 00 00 00 00  lv0.............
00000390  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  ................
000003A0  00 00 00 00 00 27 72 A8  00 00 00 00 00 16 EE B8  .....'r¨......î¸
000003B0  6C 76 32 5F 6B 65 72 6E  65 6C 2E 73 65 6C 66 00  lv2_kernel.self.
000003C0  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  ................
000003D0  00 00 00 00 00 3E 61 60  00 00 00 00 00 07 0F 94  .....&gt;a`.......”
000003E0  65 75 72 75 73 5F 66 77  2E 62 69 6E 00 00 00 00  eurus_fw.bin....
000003F0  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  ................
00000400  00 00 00 00 00 45 70 F4  00 00 00 00 00 07 FC 48  .....Epô......üH
00000410  65 6D 65 72 5F 69 6E 69  74 2E 73 65 6C 66 00 00  emer_init.self..
00000420  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  ................
00000430  00 00 00 00 00 4D 6D 3C  00 00 00 00 00 06 16 00  .....Mm&lt;........
00000440  68 64 64 5F 63 6F 70 79  2E 73 65 6C 66 00 00 00  hdd_copy.self...
00000450  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  ................


This type of memory region represents shadow registers memory region of a SPE. It's created e.g. in '''lv1_construct_logical_spe''' or in '''syscall 0x10040'''.  
00040460  33 31 35 2E 30 30 30 0A  00 00 00 00 00 00 00 00  315.000.........
00040470  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  ................
</pre>
===== BDIT_FIRMWARE_PACKAGE.pkg 3.50  =====


=== vtable ===
Here is a piece of data from decrypted package.
<pre>Offset      0 1  2  3  4  5  6  7  8  9  A  B  C  D  E  F


0x00358448 (3.15)
00000300  43 6F 70 79 72 69 67 68  74 28 43 29 20 32 30 30  Copyright(C) 200
00000310  35 2D 32 30 30 36 2C 20  53 6F 6E 79 20 43 6F 6D  5-2006, Sony Com
00000320  70 75 74 65 72 20 45 6E  74 65 72 74 61 69 6E 6D  puter Entertainm
00000330  65 6E 74 20 49 6E 63 2E  1A 00 00 00 00 00 00 00  ent Inc.........
00000340  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  ................
00000350  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  ................
00000360  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  ................
00000370  41 96 18 D3 2D 8F 0F 68  11 4D A7 09 E4 1F A7 6F  A–.Ó-.h.M§.ä.§o
00000380  EF 29 48 A0 E9 F2 A8 F0  CC 4B F3 4D E0 4A B0 17  ï)H&nbsp;éò¨ðÌKóMàJ°.
00000390  C2 DA 07 5F 96 B3 C8 8D  E1 06 2E 3A 1D A7 FD 20  ÂÚ._–³Èá..:.§ý
</pre>
===== BDPT_FIRMWARE_PACKAGE_301R.pkg 3.50  =====


=== Objects ===
Here is a piece of data from decrypted package.
<pre>Offset      0 1  2  3  4  5  6  7  8  9  A  B  C  D  E  F


Here is the list of SPE Shadow Registers memory region objects i found in HV 3.15.
00000300  43 6F 70 79 72 69 67 68  74 28 43 29 20 32 30 30  Copyright(C) 200
00000310  35 2D 32 30 30 39 2C 20  53 6F 6E 79 20 43 6F 6D  5-2009, Sony Com
00000320  70 75 74 65 72 20 45 6E  74 65 72 74 61 69 6E 6D  puter Entertainm
00000330  65 6E 74 20 49 6E 63 2E  1A 00 00 00 00 00 00 00  ent Inc.........
00000340  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  ................
00000350  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  ................
00000360  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  ................
00000370  80 18 D2 E4 22 AA 2B D7  85 47 F4 40 53 9A 04 0C  €.Òä"ª+×…Gô@Sš..
00000380  D0 B8 A5 04 20 51 9E 90  09 4F 2E 78 BA 32 C0 EA  и¥. Qž.O.xº2Àê
00000390  E9 61 96 ED D8 2A 70 C0  59 68 4E B2 47 25 9C 97  éa–íØ*pÀYhN²G%œ—
</pre>
===== BLUETOOTH_FIRMWARE.pkg 3.41  =====
<pre>Offset      0  1  2  3  4  5  6  7  8  9  A  B  C  D  E  F


{| class="wikitable FCK__ShowTableBorders"
00000000  52 43 32 39 5F 66 69 72  6D 77 61 72 65 5F 66 6F  RC29_firmware_fo
|-
00000010  6F 74 65 72 2E 64 66 75  00 00 00 00 00 00 00 00  oter.dfu........
! Address in HV dump
00000020  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  ................
! LPAR id
00000030  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  ................
! SPE
00000040  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  ................
! LPAR Start Address
00000050  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  ................
! Size
00000060  00 00 00 00 30 30 30 30  36 34 34 00 30 30 30 30  ....0000644.0000
! Physical Address
00000070  30 30 30 00 30 30 30 30  30 30 30 00 30 30 30 30  000.0000000.0000
! Flags
00000080  31 35 36 36 33 30 30 00  31 31 30 36 34 33 34 36  1566300.11064346
! log2(Page Size)
00000090  33 30 36 00 30 31 35 34  36 33 00 20 30 00 00 00  306.015463. 0...
|-
000000A0  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  ................
| 0x003ABDA0
000000B0  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  ................
| 2
000000C0  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  ................
| 1
000000D0  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  ................
| 0x300000012000
000000E0  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  ................
| 0x1000
000000F0  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  ................
| -
00000100  00 75 73 74 61 72 20 20  00 72 6F 6F 74 00 00 00  .ustar  .root...
| 0xA000000000000000
00000110  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  ................
| 0xC
00000120  00 00 00 00 00 00 00 00  00 72 6F 6F 74 00 00 00  .........root...
|-
00000130  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  ................
| 0x003B4290
00000140  00 00 00 00 00 00 00 00  00 30 30 30 30 30 30 30  .........0000000
| 2
00000150  00 30 30 30 30 30 30 30  00 00 00 00 00 00 00 00  .0000000........
| 2
 
| 0x300000014000
 
| 0x1000
000A5950  84 1B 00 C0 94 04 00 00  74 06 00 00 45 75 72 75  „..À”...t...Euru
| -
000A5960  73 5F 50 72 69 6D 61 72  79 5F 50 68 79 00 00 00  s_Primary_Phy...
| 0xA000000000000000
000A5970  4D 61 72 76 65 6C 6C 5F  41 50 00 00 94 BB 01 C0  Marvell_AP..”».À
| 0xC
 
|-
 
| 0x003A8A00
000B7CC0  00 00 00 00 01 10 60 23  4D 61 72 76 65 6C 6C 20  ......`#Marvell
| 2  
000B7CD0  46 69 72 6D 77 61 72 65  20 53 44 4B 20 56 65 72  Firmware SDK Ver
| 3  
000B7CE0  73 69 6F 6E 20 32 2E 33  2E 30 54 74 5D 04 02 2B  sion 2.3.0Tt]..+
| 0x300000010000
000B7CF0  0F 14 E1 36 04 32 0A 1A  FD 08 32 1A 1A C1 08 02  ..á6.2..ý.2..Á..
| 0x1000
 
| -
 
| 0xA000000000000000
000F42B0  44 6F 53 68 61 72 65 64  4B 65 79 53 65 71 31 3A  DoSharedKeySeq1:
| 0xC
000F42C0  20 45 6E 74 65 72 65 64  20 2D 2D 2D 20 72 73 70    Entered --- rsp
|-
000F42D0  4D 61 63 20 3D 20 25 30  32 78 3A 25 30 32 78 3A  Mac =&nbsp;%02x:%02x:
| 0x003B50F0
000F42E0  25 30 32 78 3A 25 30 32  78 3A 25 30 32 78 3A 25  &nbsp;%02x:%02x:%02x:%
| 2
000F42F0  30 32 78 0A 00 00 00 00  6D 6C 6D 65 41 75 74 68  02x.....mlmeAuth
| 4
000F4300  44 6F 53 68 61 72 65 64  4B 65 79 53 65 71 31 3A  DoSharedKeySeq1:
| 0x300000016000
000F4310  20 56 61 6C 69 64 61 74  69 6F 6E 20 66 61 69 6C    Validation fail
| 0x1000
000F4320  65 64 20 2D 2D 2D 20 72  73 70 4D 61 63 20 3D 20  ed --- rspMac =
| -  
000F4330  25 30 32 78 3A 25 30 32  78 3A 25 30 32 78 0A 00  &nbsp;%02x:%02x:%02x..
| 0xA000000000000000
000F4340  6D 6C 6D 65 41 75 74 68  44 6F 53 68 61 72 65 64  mlmeAuthDoShared
| 0xC
000F4350  4B 65 79 53 65 71 33 3A  20 76 61 6C 69 64 61 74  KeySeq3: validat
|-
000F4360  69 6F 6E 20 66 61 69 6C  65 64 21 20 2D 2D 2D 20  ion failed! ---  
| 0x001FFC90
000F4370  72 73 70 4D 61 63 20 3D  20 25 30 32 78 3A 25 30  rspMac =&nbsp;%02x:%0
| 2
000F4380  32 78 3A 25 30 32 78 0A  00 65 65 70 72 6F 6D 00  2x:%02x..eeprom.
| 5
000F4390  62 74 5F 68 63 69 00 62  74 5F 75 61 72 74 00 75  bt_hci.bt_uart.u
| 0x30000000E000
000F43A0  73 62 30 00 75 73 62 31  00 4F 53 41 00 77 6C 61  sb0.usb1.OSA.wla
| 0x1000
000F43B0  F3 B8 E9 70 01 00 00 00  1C 6B 03 00 00 02 00 00  ó¸ép.....k......
| -  
</pre>
| 0xA000000000000000
===== SYS_CON_FIRMWARE_01050101.pkg 3.41  =====
| 0xC
<pre>Offset      0  1  2  3  4  5  6  7  8  9  A  B  C  D  E  F
|-
| 0x003AE5B0
| 2
| 6
| 0x300000018000
| 0x1000
| -
| 0xA000000000000000
| 0xC
|}


== Device MMIO Memory Region class ==
00000300  1B 2D 70 0F AB 5E B3 99  68 20 FE 3D E1 80 6A 1D  .-p.«^³™h þ=á€j.
00000310  B8 FD 37 CF CD 45 85 AB  51 F7 05 E3 EA 32 A5 EA  ¸ý7ÏÍE…«Q÷.ãê2¥ê
00000320  67 45 F9 48 00 00 00 00  00 10 00 00 C0 0F 00 00  gEùH........À...
00000330  8B 04 07 F9 9B A2 90 3A  75 89 F1 42 12 59 DA 0D  ‹..ù›¢:u‰ñB.YÚ.
00000340  21 7C A2 C3 5A E4 78 00  10 8D 4B F7 A2 73 9C 63  &nbsp;!|¢ÃZäx..K÷¢sœc
00000350  5D 8D 5D 49 16 C7 6F 2C  AD 33 FE 1F D3 6C A1 CA  ]]I.Ço,­3þ.Ól¡Ê
00000360  BA AD 2B FE 8F 33 71 D7  C5 E6 5C FF BF 77 6C 80  º­+þ3q×Åæ\ÿ¿wl€
00000370  F2 BE 11 BB 3C 52 52 DC  A9 68 E5 24 AD 4F F3 48  ò¾.»&lt;RRÜ©hå$­OóH
</pre>
=== 0x6005 - Extract Package Tophalf ===


This type of memory region is created when a device MMIO region is mapped into LPAR address space, e.g. in '''lv1_map_device_mmio_region'''.
*The result of the request can be checked by reading the value of repository node '''ss.extract.request.&lt;Request ID&gt;''' periodically


=== vtable ===
=== 0x600B - Read EEPROM ===


0x00352468 (3.15)  
*I have got read access to EEPROM of Update Manager through DM and tested it with PSGroove
*I read PRODUCT_MODE from it successfully, PRODUCT_MODE = 0x000000FF
*The service expects one additional parameter: offset (4 bytes)  
*The service accepts only some predefined offsets
*The service returns the specified offset and the value at this offset


=== Member variables ===
==== EEPROM Offset Table ====


offset 0xA8 - physical address where the device MMIO region is mapped to
Here is the table of EEPROM offsets that can be accessed through Update Manager (3.15):


=== Objects  ===
[[SC_EEPROM#EEPROM_Offset_Table_-_Flags_and_Tokens| --> EEPROM Offset Table]]


Here is the list of Device MMIO memory region objects i found in HV 3.15.
=== 0x600C - Write EEPROM  ===


{| class="wikitable FCK__ShowTableBorders"
*Writting to EEPROM of Update Manager is also possible through DM
|-
*Tested this service successfully with QA flag
! Address in HV dump
 
! LPAR id
=== 0x6010 - Check Integrity  ===
! LPAR Start Address
 
! Size
*This service checks integrity of important files stored on '''/dev/rflash1''', e.g. '''lv0''' or '''lv1'''
! Flags
*The service is used e.g. by System Manager
! log2(Page Size)
*When '''product mode''' is NOT '''0xFF''' then check is skipped&nbsp;!!!
! Physical Address
** This check is patched to always skip, with 'nocheck' downgrader patches
! Device
 
|-
=== 0x6011 - Get Applicable Version  ===
| 0x001FDF00
| 2
| 0x4000001D0000
| 0x10000
| 0x8000000000000000
| 0xC
| 0x24003010000
| USB controller
|-
| 0x003B3850
| 2
| 0x400000200000
| 0x10000
| 0x8000000000000000
| 0xC
| 0x24003020000
| USB controller
|-
| 0x003B6E50
| 2
| 0x4000001E0000
| 0x10000
| 0x8000000000000000
| 0xC
| 0x24003810000
| USB controller
|-
| 0x003B9950
| 2
| 0x4000001F0000
| 0x10000
| 0x8000000000000000
| 0xC
| 0x24003820000
| USB controller
|}


== GPU Device Memory Region class  ==
*I have got access to this service through DM and PSGroove and tested it
*The service expects one additional unknown parameter of size 4 bytes, it has to be 0x00000001 or else the service fails<br> (sc863(0x6011,1,out:uint64_t,0,0,0,0,0))


This type of memory region is created e.g. in '''lv1_gpu_open''', '''lv1_gpu_device_map''' and '''lv1_undocumented_function_114'''.
Here is the return value:
<pre>00 00 00 01 00 00 00 00 00 03 00 20 00 00 00 00 00 00 00 00 00 00 00 01
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 01
</pre>


=== vtable ===
=== BD Firmware Update ===


0x00357C48 (3.15)  
*Update Manager in HV Process 6 updates BD firmware through '''ATAPI Interface''' of '''/dev/rbd0''' device.
*BD firmware is sent to BD drive by using '''ATAPI Write Buffer (0x3B)''' command with '''Mode 0x07 (Download microcode with offsets and save)''' and '''Buffer ID 0x00'''.  
*The current BD drive firmware version and hash is also stored by and retrieved from SYSCON by using '''SC Manager Get/Set Region Data (0x9006/0x9007)''' service. After successfull BD firmware update, Update Manager sends the new firmware version and hash to SYSCON.
*BD firmware package is decrypted, SCE header size + 0x80 bytes are skipped and data beginning with copyright message is sent to BD drive.
*BD firmware is sent packet wise, one packet is at most 0x8000 bytes.
*After each sent packet, Update Manager checks the result by using '''ATAPI Request Sense (0x3)''' command.
*Theoretically, BD firmware update can be done also from GameOS by using ATAPI interface of the BD drive.


=== Member variables ===
==== Detecting BD Drive Type, Generation and Revision ====


offset 0xA8 - physical address
*To detect BD drive type, Update Manager uses '''ATAPI Inquiry''' command.
*To detect BD drive generation, Update Manager uses '''ATAPI Mode Sense 10''' command.


=== Objects ===
===== BD Drive Type Table =====


Here is the list of Device GPU memory region objects i found in HV 3.15.
Here is the BD Drive Type Table extracted from HV Process 6 (3.15):


{| class="wikitable FCK__ShowTableBorders"
{| class="wikitable FCK__ShowTableBorders"
|-
|-
! Address in HV dump
! Index
! LPAR id
! Vendor Identification String
! LPAR Start Address
! Drive Type
! Size
|-
! Flags
| 0
! log2(Page Size)
| <pre>"SONY    EmerFlashROM"</pre>
! Physical Address
| 0x2100000000000001
|-
|-
| 0x003AF380
| 1
| 2
| <pre>"SONY    PS-EMBOOT  300R"</pre>
| 0x700190000000
| 0x2100000000000001
| 0xFE00000
| 0x8000000000000000
| 0x14
| 0x28080000000
|-
|-
| 0x003AF500
| 2  
| 2  
| 0x4000001A0000
| <pre>"SONY    BDRW AQUAM(BDIT)"</pre>
| 0xC000
| 0x1100000000000001
| 0x8000000000000000
|-
| 0xC
| 3
| 0x3C0000
| <pre>"SONY    PS-SYSTEM  300R"</pre>
| 0x1100000000000001
|-
| 4
| <pre>"SONY    PS-SYSTEM  V300"</pre>
| 0x1100000000000001
|-
| 5
| <pre>"SCEI    EMER-FLASH-8"</pre>
| 0x2200000000000002
|-
| 6
| <pre>"SONY    PS-EMBOOT  301R"</pre>
| 0x2200000000000002
|-
| 7
| <pre>"SONY    PS-SYSTEM  301R"</pre>
| 0x1200000000000002
|-
| 8
| <pre>"SONY    PS-EMBOOT  302R"</pre>
| 0x2200000000000003
|-
| 9
| <pre>"SONY    PS-SYSTEM  302R"</pre>
| 0x1200000000000003
|-
| 10
| <pre>"SONY    PS-EMBOOT  303R"</pre>
| 0x2200000000000004
|-
| 11
| <pre>"SONY    PS-SYSTEM  303R"</pre>
| 0x1200000000000004
|-
| 12
| <pre>"SONY    PS-EMBOOT  304R"</pre>
| 0x2200000000000005
|-
|-
| 0x003AF680
| 13
| 2
| <pre>"SONY    PS-SYSTEM  304R"</pre>
| 0x4800006C0000
| 0x1200000000000005
| 0x40000
| 0x8000000000000000
| 0xC
| 0x2808FE00000
|-
|-
| 0x003AFC30
| 14
| 2
| <pre>"SONY    PS-EMBOOT  306R"</pre>
| 0x440000380000
| 0x2200000000000007
| 0x20000
| 0x8000000000000000
| 0xC
| 0x28000C00000
|-
|-
| 0x003BB420
| 15
| 2
| <pre>"SONY    PS-SYSTEM  306R"</pre>
| 0x3C0000108000
| 0x1200000000000007
| 0x8000
| 0x8000000000000000
| 0xC
| 0x28000080100
|}
|}


== Direct Map Memory Region class ==
==== Methods (HV Process 6)  ====


This type of memory region is created in HV call '''lv1_undocumented_function_114'''.
update_manager_update_bd_firmware - 0x800064BC (3.15)
'''lv1_undocumented_function_114''' allows you to map any memory address into LPAR's memory address.


* The HV call '''lv1_undocumented_function_115''' destroys a memory region of this type.
bd_updater_prepare_drive - 0x80011A88 (3.15)
* HV allows GameOS to create objects of this type of size 0 only !!! But it can be exploited with a dangling HTAB entry.


=== vtable  ===
bd_updater_send_firmware - 0x80011544 (3.15)


0x00357C48 (3.15)  
bd_updater_disable_reqsense - 0x80010410 (3.15)  


=== Member variables  ===
bd_updater_enable_reqsense - 0x800104D8 (3.15)


offset 0xA8 - physical address
send_atp_command - 0x80023B10 (3.15)


=== Exploiting HV with memory glitching and HV call lv1_undocumented_function_114 ===
== 0x9000 - SC Manager  ==


Here is a short description of the method i used to exploit HV from GameOS 3.15 and 3.41.
*SC Manager cannot be accessed directly by using DM unfortunately (DM discards all requests) but it's used by other services that are accessable through DM
*E.g. Update Manager services "Read EEPROM" and "Write EEPROM" send requests to SC Manager services "Read EEPROM" and "Write EEPROM"
*SC Manager runs '''sc_iso.self'''
* With full HV rights you could patch Dispatcher Manager and enable access to SC Manager from GameOS.


* First i used the Geohot's method to create a dangling HTAB entry.
{| class="wikitable FCK__ShowTableBorders"
* Making memory glitch work on GameOS was the largest of my obstacles but i solved it and i'm able to create a dangling HTAB entry from GameOS within 1-3 minutes.
|-
* Then i created many '''Direct Map Memory Region''' objects of size 0 with HV call '''lv1_undocumented_function_114''' and checked if they are within the page to which the dangling HTAB entry points to.
! Packet ID
* When i found one such '''Direct Map Memory Region''' object i patched the size of this object to 0x1000. Then i pointed this memory region object to the code of HV call '''lv1_undocumented_function_114''' and patched 4 bytes in this HV call which allows me to create any '''Direct Map Memory Region''' objects without any restrictions.
! Description
* Function '''LPAR_construct_direct_mapping_mem_region''' which is used by HV call '''lv1_undocumented_function_114''' has a parameter (register %r9) and when this parameter is not 0 then HV will allow you to create any '''Direct Map Memory Region''' objects without restrictions, but unfortunately the HV call '''lv1_undocumented_function_114''' passes 0 in this parameter, so i just patched it.
|-
* Then i mapped whole HV memory range with the patched HV call '''lv1_undocumented_function_114''' into the address space of GameOS.
| 0x9001
* And now you have read/write access to the whole HV.
| Get SRH
* $ONY could fix this exploit by disallowing creating of '''Direct Map Memory Region''' objects of size 0, but i know tons of other HV C++ classes which will allow me to exploit the HV in a similar way, so it wouldn't bring $ONY anything :-) And they have to change member variable offsets in those objects to make sure that i cannot patch them easily :-)
|-
| 0x9002
| Set SRH
|-
| 0x9003
| Encrypt
|-
| 0x9004
| Decrypt
|-
| 0x9005
| Init For VTRM
|-
| 0x9006
| Get Region Data
|-
| 0x9007
| Set Region Data
|-
| 0x9008
| Set RTC
|-
| 0x9009
| Get Time
|-
| 0x900A
| Set Time
|-
| 0x900B
| Read EPROM
|-
| 0x900C
| Write EPROM
|-
| 0x900D
| Init For Updater
|-
| 0x900E
| Get SC Status
|-
| 0x9011
| SC Binary Patch
|-
| 0x9012
| SC RTC Factory
|-
| 0x9013
| Correct RTC Factory
|-
| 0x9014
| Set SC Status
|-
| 0x9015
| Backup Root Info
|-
| 0x9016
| Restore Root Info
|}


== Methods ==
=== 0x9001 - SC Get SRH ===


LPAR_get_memory_region_by_start_address - 0x002C7C40 (3.15)
<pre>
 
struct ss_sc_mgr_get_srh
LPAR_get_memory_region_by_address - 0x002C7DA8 (3.15)
{
    u8 field0[20];
    u8 res1[4];
    u8 field18[20];
    u8 res2[4];
};
</pre>


LPAR_mem_addr_to_phys_addr(LPAR id, LPAR address, phys_addr) - 0x002FB8F0 (3.15)
=== 0x9003 - SC Encrypt  ===


LPAR_construct_direct_mapping_mem_region - 0x002D4D04 (3.15)
*There are 5 different types/kinds of encryption: 1 - 5.


= Network Devices  =
<pre>
struct ss_sc_mgr_encrypt
{
    u32 type;              /* 1 - 5 */
    u8 res[4];
    u8 field8[16];
    u8 field18[16];
    u64 field28;
};
</pre>


== Ethernet Gelic Device ==
=== 0x9004 - SC Decrypt ===


device id = 0
*There are 5 different types/kinds of decryption: 1 - 5.
*'''Virtual TRM Decrypt Master (0x200E)''' service uses e.g. decryption type 4.


MAC Address: 00:1F:A7:C6:2A:C5
=== 0x9006 - SC Get Region Data  ===


device memory base address = 0x24003004000 (size = 0x1000)
*This service expects an ID. The valid range of ID is 0 - 15.
*E.g. Update Manager uses this service to retrieve hash and version of some SELFs and firmwares, e.g. '''lv0''' and '''lv1'''.


== WLAN Gelic Device  ==
<pre>
struct ss_sc_mgr_get_region_data
{
    u64 id;
    u64 data_size;    /* max 0x30 bytes */
    u8 data[0];
};
</pre>


device id = 0
==== Update Package Type - ID Mapping Table ====


MAC Address: 02:1F:A7:C6:2A:C5 (locally administered)
{| class="wikitable FCK__ShowTableBorders"
 
|-
=== Net Manager  ===
! Update Package Type
! ID
|-
| 1
| 0
|-
| 2
| 2
|-
| 3
| 4
|-
| 4
| 6
|-
| 5
| 7
|-
| 6
| 8
|}


*Net Manager runs in Process 9
=== 0x9007 - SC Set Region Data  ===
*It sends commands to '''/dev/sc1''' to reset WLAN Gelic device
*It opens '''/dev/net0''', sets MAC address and writes device firmware '''eurus_fw.bin''' to WLAN device by using '''ioctl''' syscall


=== /dev/net0  ===
*This service expects an ID. The valid range of ID is 0 - 15.
*E.g. Update Manager uses this service to store hash and version of some SELFs and firmwares, e.g. '''lv0''' and '''lv1'''.


The device supports 3 ioctl commands:
<pre>
struct ss_sc_mgr_set_region_data
{
    u64 id;
    u64 data_size;    /* max 0x30 bytes */
    u8 data[0];
};
</pre>


*0 - 0x002AC10C (3.15)
=== 0x900B - SC Read EPROM  ===
*1 - 0x002AC250 (3.15)
*2 - EURUS_STAT 0x002AC320 (3.15)


=== Methods  ===
* There are 2 ways to access SC EPROM: '''NVS Service''' and '''Device Access Service'''.
* '''NVS Service''' uses '''Block ID''' and '''Block Offset'''.
* Not all EPROM offsets can be accessed through SC Manager.


net_control_cmd_GELIC_LV1_POST_WLAN_CMD - 0x0024A55C (3.15)
<pre>
struct ss_sc_mgr_read_eprom
{
    u32 offset;
    u8 res1[4];
    u32 nread;              /* max 0x100 bytes */
    u8 res2[4];
    u64 buf_size;
    u8 buf[0];
    /* here follows buf */
};
</pre>


net_control_wlan_cmd_GELIC_EURUS_CMD_ASSOC - 0x00246C78 (3.15)  
==== EPROM Offset - Block ID and Block Offset Mapping Table (NVS Service) ====


net_control_wlan_cmd_GELIC_EURUS_CMD_START_SCAN - 0x00248A14 (3.15)
{| class="wikitable FCK__ShowTableBorders"
|-
! EPROM Offset
! Block ID
! Block Offset
! Notes
|-
| 0x48000 - 0x480FF
| 0x00
| 0x48000 - 0x480FF
|
|-
| 0x48800 - 0x488FF
| 0x01
| 0x48800 - 0x488FF
|
|-
| 0x48C00 - 0x48CFF
| 0x02
| 0x48C00 - 0x48CFF
|
|-
| 0x48D00 - 0x48DFF
| 0x03
| 0x48D00 - 0x48DFF
|
|-
| 0x2F00 - 0x2FFF
| 0x10
| 0x2F00 - 0x2FFF
| "Industry Area" aka OS Version Area
|-
| 0x3000 - 0x30FF
| 0x20
| 0x3000 - 0x30FF
| "CS Area"
|-
| All other offsets
| Invalid
| Invalid
|}


net_control_wlan_cmd_GELIC_EURUS_CMD_SET_WEP_CFG - 0x00249F24 (3.15)
=== 0x900C - SC Write EPROM  ===


net_control_wlan_cmd_GELIC_EURUS_CMD_SET_WPA_CFG - 0x002497B8 (3.15)
<pre>
struct ss_sc_mgr_write_eprom
{
    u32 offset;
    u8 res1[4];
    u32 nwrite;
    u8 res2[4];
    u64 buf_size;
    u8 buf[0];
    /* here follows buf */
};
</pre>


= Event Notification  =
=== 0x900E - SC Get Status ===


*Event Notfication is used e.g. to notify a LPAR about some event, e.g. device interrupt or notify a LPAR about destruction of another LPAR.
Here is what the service returned on my fat PS3:
*For example Process 9 is notified through Event Notification when LPAR 2 is destructed.
<pre>
*During LPAR construction, Process 9 creates an Outlet object with '''syscall 0x1001A''' and then passes the outlet ID to the '''syscall 0x10009''' that constructs the LINUX LPAR. In this way Process 9 is notified when LINUX LPAR is destructed.
0x00 0x00 0x00 0x03 0x00 0x00 0x00 0x00 0xC0 0x00 0x00 0xFF 0x00 0x00 0x00 0x00
</pre>


== Outlet class  ==
So, '''version''' is '''0x00000003''' and '''mode''' is '''0xC00000FF'''.


This is the base Outlet class. There are different types of Outlet and they derive from this base class.
<pre>
struct ss_sc_mgr_get_sc_status
{
    u32 version;
    u8 res1[4];
    u32 mode;
    u8 res2[4];
};
</pre>


=== vtable ===
=== 0x9011 - SC Binary Patch ===


0x00357DC0 (3.15)
*This service is used by Update Manager to send a new SC firmware version to SYSCON.


=== Member variables ===
==== SC Isolation DMA Buffer Header ====
<pre>struct sc_iso_header
{
    u32 seqno;
    u32 mbmsg;
    u32 cmd;
    u32 cmd_size;
    u8 cmd_data[0];
};
</pre>


offset 0x30 - type (8 bytes)  
== 0x11000 - SPM (Security Policy Manager) ==


offset 0x38 - pointer to LPAR that owns this Outlet object
*Packet ID is mapped to '''SS id'''
*SS id value range is 0x0 - 0x84


offset 0x48 - outlet id (8 bytes)
{| class="wikitable FCK__ShowTableBorders"
|-
! Packet ID
! Description
|-
| 0x11001
| Request
|-
| 0x11002
| Load Additional Policy
|}


offset 0x90 - VIRQ assigned to this Outlet object (4 bytes)  
== 0x14000 - SLL (Secure LPAR Loader) ==


== Event Receive Port class  ==
*SLL opens '''lv2_kernel.self''', parses ELF header and determines the size of initial memory region for GameOS LPAR
*SLL creates a memory region for GameOS LPAR by using '''syscall 0x10000'''.
*SLL opens '''/proc/partitions/&lt;LPAR id&gt;/mem''' file and maps it with mmap syscall into it's address space.
*Then it authenticates, decrypts and copies the SELF file of GameOS to LPAR's memory region by using '''SPE syscalls 0x10040 and 0x10042'''.
*Linux is not loaded by SLL, it's loaded in Process 9 by Linux System Manager
*GameOS file image '''lv2_kernel.self''' is stored on '''/dev/rflash1'''


*This type of Outlet is created e.g. in '''lv1_construct_event_receive_port''' and in '''syscall 0x1001A'''.
{| class="wikitable FCK__ShowTableBorders"
*HV calls '''lv1_connect_irq_plug''' and '''lv1_connect_irq_plug_ext''' assigns a VIRQ to Event Receive Port object.
|-
! Packet ID
! Description
|-
| 0x14004
| Load GOS
|-
| 0x14005
| Unload GOS
|}


=== vtable ===
== 0x15000 - SPL (Secure Profile Loader) ==


0x00357E88
*DEFAULT.SPP file is stored on '''/dev/rflash1'''


== VUART Outlet  ==
{| class="wikitable FCK__ShowTableBorders"
 
|-
*HV supports only one VUART Outlet per LPAR  
! Packet ID
*'''lv1_configure_virtual_uart_irq''' constructs a VUART Outlet object and passes the address of LPAR's VUART IRQ Bitmap to HV
! Description
 
|-
=== vtable  ===
| 0x15001
 
| Get LPAR Parameter Size/Get LPAR Parameter
0x00357DC0
|-
 
| 0x15003
=== VUART IRQ Bitmap  ===
| Get Contents Size/Get Contents
|-
| 0x15009
| Get Component
|}


*At address 0x38(LPAR ptr) + 0x158 is the VUART IRQ Bitmap owned by HV for LPAR (4 * 8 bytes = 256 bits)
=== SPP File  ===
*At address 0x38(LPAR ptr) + 0x150 is stored the physical address of LPAR's VUART IRQ Bitmap that was passed to '''lv1_configure_virtual_uart_irq'''
*When a VUART interrupt is generated by HV then first the VUART IRQ Bitmap owned by HV is updated and then this bitmap is copied to LPAR's VUART IRQ Bitmap, so VUART IRQ Bitmap is stored twice, once in HV and once in LPAR, just like IRQ State Bitmap.
*VUART IRQ Bitmap is not allowed to cross page boundary of LPAR memory region where it is stored. HV checks it and makes sure that it doesn't happen.
*'''GameOS 3.41''' VUART IRQ bitmap is at address '''0x80000000003556E8''' and of size '''32 bytes (256 bits, each bit corresponds to a VUART port)'''.
*'''GameOS 3.15''' VUART IRQ bitmap is at address '''0x8000000000354768'''.


= Logical PPE  =
*The file is encrypted but can be read by using 0x15003 service of SPL
*SPL reads SPP file, parses SPP header and checks some fields
*SPP file is verified and decrypted by SPU module '''spp_verifier.self''' that cab be executed with HV SPE calls
*Even old default.spp from PS3 Firmware 1.10 can be decrypted with spp_verifier.self from PS3 Firmware 3.41
*Header format version should be '''5''' or else the header check fails
*If (SPP header size&nbsp;% 256&nbsp;!= 0) then header check fails
*'''Finally i was able to decrypt profile file from 3.41 but by using SPE HV calls only&nbsp;!!! And Linux Manager is still there&nbsp;!!!'''
*The decrypted file is a binary file


*Logical PPE is used for interrupt management of LPAR.  
Here are the contents of [[Default.spp#3.56_RETAIL.2FCEX]] from 3.55. <br />
*A Logical PPE object is created in '''syscall 0x10005'''. It' used e.g. in Process 9 during LPAR construction.  
Here are the contents of [[Default.spp#3.55_RETAIL.2FCEX]] from 3.55. <br />
*'''syscall 0x10007''' activates a Logical PPE object
Here are the contents of [[Default.spp#3.41_RETAIL.2FCEX]] from 3.41. <br />
*0x67F0(HSPRG0) - pointer to currently active Logical PPE object (in HV dump it points to Linux PPE object naturally because the dump was made on Linux, so Linux LPAR was active at that time)
Here are the contents of [[Default.spp#3.15_RETAIL.2FCEX]] from 3.15. <br />
*E.g. '''lv1_get_logical_ppe_id''', '''lv1_start_ppe_periodic_tracer''' and '''lv1_set_ppe_periodic_tracer_frequency''' grab the currently active Logical PPE object
Here are the contents of [[Default.spp#1.00_DEBUG.2FDEX]] from 1.00 Debug Firmware. <br />


== vtable ==
==== SPP Header ====


0x00357DF0 (3.15)  
offset 0x2 - header format version (2 bytes)  


== Member variables  ==
offset 0x4 - header size (4 bytes)


offset 0x90 - pointer to an object that contains VIRQ-Outlet mapping table for thread 0
offset 0x18 - number of segments (4 bytes)


offset 0x98 - pointer to an object that contains VIRQ-Outlet mapping table for thread 1
==== Segments  ====


== Objects  ==
*Segments follow after the header
*SPP file contains several segments.


Here is the list of Logical PPE objects i found in HV 3.15.
Here is the list of profile segments from 3.41:


{| class="wikitable FCK__ShowTableBorders"
{| class="wikitable FCK__ShowTableBorders"
|-
|-
! Address in HV dump
! Name
! LPAR id  
! auth id/authority id
! PPE id
|-
|*SCE_CELLOS_PME               
|0x1070000001000001
|-
|*PS3_LPAR                     
|0x1070000002000001
|-
|*PS2_LPAR                     
|0x1020000003000001
|-
|*PS2_GX_LPAR                   
|0x1020000003000001
|-
|*PS2_SW_LPAR                   
|0x1020000003000001
|-
|*LINUX_LPAR                   
|0x1080000004000001
|-
|-
| 0x0069C7F0
|*SCE_CELLOS_SYSTEM_MGR         
| 1
|0x107000001D000001
| 1
|-
|-
| 0x007A8900
|*SCE_CELLOS_SYSTEM_MGR_LINUX   
| 2
|0x107000001D000001
| 1
|}
 
== Virtual IRQ - Outlet Mapping  ==
 
*HV maintains 2 tables per PPE that map a VIRQ to an Outlet object.
*The table has 256 entries and is indexed by VIRQ.
*Each entry is a pointer to Outlet object.
*Each Logical PPE object has 2 tables, one for each thread of Cell CPU.
 
=== LPAR 1 PPE 1 Thread 0  ===
 
0x0069C990 (3.15) - address of VIRQ-Outlet table for '''LPAR 1 PPE 1 Thread 0''' (not empty)
 
{| class="wikitable FCK__ShowTableBorders"
|-
|-
! VIRQ
|*SCE_CELLOS_SYSTEM_MGR_PS2     
! Address of Outlet object in HV dump
|0x107000001D000001
! Description
|-
|-
| 58
|*SCE_CELLOS_SYSTEM_MGR_PS2_SW 
| 0x00090D10
|0x107000001D000001
| -
|-
|-
| 59
|*SCE_CELLOS_SYSTEM_MGR_PS2_GX 
| 0x006BAC50
|0x107000001D000001
| -
|-
|-
| 60
|*SCE_CELLOS_SS_SECURE_RTC     
| 0x006B3ED0
|0x1070000033000001
| FLASH storage device / Storage device notification for LPAR 1
|-
|-
| 61
|*SCE_CELLOS_SS_INDI_INFO_EID
| 0x00697E70
|
| VUART interrupts
|-
|-
| 62
|*SCE_CELLOS_SS_INIT_LV1_ACL   
| 0x001C8F20
|0x1070000017000001
| -
|}
|}


=== LPAR 1 PPE 1 Thread 1 ===
== 0x15003 - Get Contents Size/Get Contents ==
 
0x0069D9B0 (3.15) - address of VIRQ-Outlet table for '''LPAR 1 PPE 1 Thread 1''' (empty)


=== LPAR 2 PPE 1 Thread 0  ===
*This service provides the contents of a segment specified by a service requester
*I have got access to this service through DM but couldn't get through access policy yet, the service returns error code 0x00000005 that means '''Access Violation'''
*But i still could test with this service which segment names are valid
*I need valid '''laid''' and '''paid''' to get through it


0x000A06B0 (3.15) - address of VIRQ-Outlet table for '''LPAR 2 PPE 1 Thread 0''' (not empty)
== 0x17000 - Indi Info Manager  ==


{| class="wikitable FCK__ShowTableBorders"
{| class="wikitable FCK__ShowTableBorders"
|-
|-
! VIRQ
! Packet ID
! Address of Outlet object in HV dump
! Description
! Description
|-
|-
| 20
| 0x17001
| 0x003AA210
| Read EID Data Size By Index/Read metldr Size
| -
|-
| 0x17002
| Read EID Data By Index/Read metldr
|-
|-
| 21
| 0x17003
| 0x003AFEC0
| Read ID Data
| -
|-
|-
| 22
| 0x17004
| 0x001FC010
| Read System Data
| -
|-
|-
| 23
| 0x17005
| 0x003A8E50
| Write System Data?
| -
|-
|-
| 24
| 0x17006
| 0x001FFED0
| Write smth?
| SPE 0 Class 0 Interrupt
|-
|-
| 25
| 0x17007
| 0x003AE160
| Read System Data From EEPROM
| SPE 0 Class 1 Interrupt
|-
|-
| 26
| 0x17008
| 0x003AE350
| not implemented
| SPE 0 Class 2 Interrupt
|-
|-
| 27
| 0x17009
| 0x003AB100
| unknown
| SPE 1 Class 0 Interrupt
|-
|-
| 28
| 0x1700A
| 0x003AB2F0
| not implemented
| SPE 1 Class 1 Interrupt
|-
|-
| 29
| 0x1700B
| 0x003AB4E0
| not implemented
| SPE 1 Class 2 Interrupt
|-
|-
| 30
| 0x1700C
| 0x003AA6A0
| not implemented
| SPE 2 Class 0 Interrupt
|-
|-
| 31
| 0x1700D
| 0x003AA890
| not implemented
| SPE 2 Class 1 Interrupt
|-
|-
| 32
| 0x1700E
| 0x003AAA80
| not implemented
| SPE 2 Class 2 Interrupt
|-
|-
| 33
| 0x1700F
| 0x003B44A0
| not implemented
| SPE 3 Class 0 Interrupt
|-
|-
| 34
| 0x17010
| 0x003B4690
| unknown
| SPE 3 Class 1 Interrupt
|-
|-
| 35
| 0x17011
| 0x003B4AD0
| unknown
| SPE 3 Class 2 Interrupt
|-
|-
| 36
| 0x17012
| 0x003B5300
| unknown
| SPE 4 Class 0 Interrupt
|-
|-
| 37
| 0x17013
| 0x003B54F0
| Read eEID Size
| SPE 4 Class 1 Interrupt
|-
|-
| 38
| 0x17014
| 0x003B56E0
| Write eEID/Write metldr
| SPE 4 Class 2 Interrupt
|-
|-
| 39
| 0x17015
| 0x003AE7C0
| Read cISD Size
| SPE 5 Class 0 Interrupt
|-
|-
| 40
| 0x17016
| 0x003AE9B0
| Read cISD
| SPE 5 Class 1 Interrupt
|-
|-
| 41
| 0x17017
| 0x003AEBA0
| Write cISD
| SPE 5 Class 2 Interrupt
|}
 
*Indi Info Manager is accessed e.g. in '''syscall 868''' on GameOS
 
=== 0x17001 - Read EID Data Size By Index  ===
 
*I have got access to this service through DM and tested it
*This service is used e.g. by Update Manager, User Token Manager or Storage Manager
*The service expects 2 additional parameters, each parameter is 8 bytes
*I tested it with values: 0x0, 0x4 and 0x1000 for the 1st parameter. I extracted this values from HV Processes which use this service
*The 2nd parameter is not used in a request but in a response. It contains EID size.
 
{| class="wikitable FCK__ShowTableBorders"
|-
|-
| 42
! Index
| 0x003B2040
! Size Of Data
| Storage device notification for LPAR 2
! Description
|-
|-
| 43
| 0
| 0x003AEE30
| 0x860
| VUART interrupts
| EID0
|-
| 1
| 0x2A0
| EID1
|-
|-
| 44
| 2
| 0x001FEAA0
| 0x730
| -
| EID2
|-
|-
| 45
| 3
| 0x001FEED0
| 0x100
| HDD storage device
| EID3
|-
|-
| 46
| 4
| 0x003B5E20
| 0x030
| -
| EID4
|-
|-
| 47
| 5
| 0x003B7040
| 0xA00
| -
| EID5
|-
|-
| 48
| 6
| 0x003B9B40
| 0x020
| -
| cISD0
|-
|-
| 49
| 7
| 0x003B3A40
| 0x200
| -
| cISD1
|-
|-
| 50
| 8
| 0x003BACA0
| 0x010
| Gelic device
| cISD2
|-
|-
| 51
| 9
| 0x003BAE10
| 0x030
| UNKNOWN storage device
| cCSD0
|-
|-
| 52
| 0x1000
| 0x003B8350
| 0xe960
| -
| metldr - size is version dependand
|}
|}


=== LPAR 2 PPE 1 Thread 1 ===
=== 0x17002 - Read EID Data By Index  ===
 
*I have got access to this service through DM and tested it
*This service is used e.g. by Update Manager, User Token Manager or Storage Manager
*The service expects 2 additional parameters, each parameter is 8 bytes
*The 1st parameter is same as the 1st parameter of service '''Read EID Data Size By Index'''
*The 2nd parameter is '''EID Data Size''' that is returned by the service '''Read EID Data Size By Index'''
*The returned data is some binary data.
*The data returned by the service with 1st parameter set to 0x0 or 0x4 is from file '''eEID''' stored on FLASH storage device region 0.
*The data returned by the service with 1st parameter set to 0x1000 contains string '''metldr'''.
*E.g. EID0 data is passed by Update Manager to SPU module '''spu_token_processor.self''' when Update Manager loads and executes it with syscall '''0x10043'''.
*E.g. EID4 data is passed by Storage Manager to SPU module '''sb_iso_spu_module.self'''.
 
=== 0x17004 - Read System Data  ===
 
*Reads data from '''cISD''' or '''cCSD''' files stored on '''/dev/rflash1'''.
*E.g. Gelic MAC address is stored in file '''cISD'''.
 
=== 0x17007 - Read System Data From EEPROM ===
 
*Reads data from SC EEPROM
*An index is passed to the service. The index is mapped to a specific SC EEPROM offset.


0x007A89E0 (3.15) - address of VIRQ-Outlet table for '''LPAR 2 PPE 1 Thread 1''' (not empty)
Here is the list of possible EEPROM offsets from HV 3.15:


{| class="wikitable FCK__ShowTableBorders"
{| class="wikitable FCK__ShowTableBorders"
|-
|-
! VIRQ
! Index
! Address of Outlet object in HV dump
! SC EEPROM Offset
! Description
! Size Of Data
|-
|-
| 16
| 0
| 0x003B2480
| 0x48D20
| -
| 6
|-
|-
| 17
| 1
| 0x003B2590
| 0x48D28
| -
| 6
|-
|-
| 18
| 2
| 0x003B26A0
| 0x48D30
| -
| 6
|-
| 3
| 0x48D38
| 6
|-
| 4
| 0x48D00
| 4
|-
| 5
| 0x48D04
| 4
|-
|-
| 19
| 6
| 0x003B27B0
| 0x48D08
| -
| 4
|}
|}


== IRQ State Bitmap ==
=== 0x17014 - Write eEID/Write metldr ===
 
*'''Holy crap, it writes passed data to the region of FLASH memory where eEID or metldr data is stored&nbsp;!!!'''
*'''And GameOS is allowed to use this service&nbsp;!!!'''
*'''Do not experiment with this service if you don't know what it does or else your PS3 will not work anymore&nbsp;!!!'''


*There is one IRQ State Bitmap (256 bits = 32 bytes) per thread of Logical PPE
=== 0x17015 - Read cISD Size  ===
*'''HSPRG0 value is per thread''', so there are 2 HSPRG0 values in HV dump&nbsp;!!!
*The IRQ State Bitmap of a thread is stored at -0x68E0(HSPRG0)
*When an Event or Interrupt happens then the bitmap at 0x68E0(HSPRG0) is updated
*The physical address of '''LPAR's IRQ State Bitmap''' of thread is stored at offset -0x68C0(HSPRG0)
*The address of LPAR's IRQ State Bitmap is passed to Hypervisor through HV call '''lv1_configure_irq_state_bitmap'''
*'''lv1_detect_pending_interrupts''' returns value of current IRQ State Bitmap.
*The IRQ State Bitmap is updated if an Outlet object is assigned to VIRQ and when Outlet generates an event
*After IRQ State Bitmap update, it's copied to LPAR's IRQ State Bitmap and a hardware interrupt is generated so that LPAR can read it's IRQ State Bitmap and handle interrupts.
*So, IRQ State Bitmap is stored twice, once in HV and once in LPAR, just like VUART IRQ Bitmap.
*'''GameOS''' IRQ state bitmap is stored at address '''SPRG0 + 0x1C0 and of size 64 bytes (256 bits state + 256 bits mask) per thread of Cell CPU'''. So there are 2 IRQ state bitmaps.


0x8941FC0 - physical address of LPAR's IRQ State Bitmap for Thread 0 of LINUX LPAR
*Returns size of data '''cISD''' that is stored on '''FLASH storage device region 0'''


0x8948FC0 - physical address of LPAR's IRQ State Bitmap for Thread 1 of LINUX LPAR
=== 0x17016 - Read cISD  ===


= System Controller (SC or SYSCON)  =
*Returns data '''cISD''' that is stored on '''FLASH storage device region 0'''


*Data received from SC is sent to a VUART
=== 0x17017 - Write cISD  ===
*'''lv1_get_rtc''' and '''syscall 0x10036''' communicate with '''SC VUART 4'''.


=== VUART Table  ===
*'''Writes passed data to the region of FLASH memory where cISD data is stored&nbsp;!!!'''


*Address of SC VUART Table - 0x00610410 (3.15).
== 0x18000 - DM (Dispatcher Manager) ==
*There are 5 VUARTs for SC in HV 3.15


Here is the SC VUART table from HV 3.15:
*Dispatcher Manager runs in Process 3.
*When SLL (Secure LPAR Loader) creates GamesOS LPAR and loads it, it also creates a VUART with port number '''10''' owned by GameOS using a service provided by Dispatcher Manager (0x18001 - Construct Service Port).
*Dispatcher Manager communicates with GameOS through this VUART. It opens the file '''/proc/partitions/&lt;LPAR id&gt;/vuart/10'''. When the file '''/proc/partitions/&lt;LPAR id&gt;/vuart/10''' is opened by Dispatcher Manager, the Hypervisor creates a peer VUART which is connected to the GameOS's VUART 10.
*After that Dispatcher Manager reads requests from this VUART sent by GameOS and dispatches these requests to services (functions) provided by Hypervisor Processes through sockets. '''Through VUART and Dispatcher Manager, the GameOS LPAR has access to all services provided by Hypervisor Processes.'''
*However, the services provided by Hypervisor Processes are protected by Security Policy Manager (SPM). Before Dispatcher Manager routes the requests from GameOS to these services, it consults SPM (by using 0x11001 service of SPM) and checks if the GameOS has access rights to the requested service. If not then the request is not routed.
*DM overwrites the LAID sent in SS packet header with the LAID of the LPAR that sent the request. So, no matter what LAID you send in SS packet header, it will be always overwritten with the correct one by DM. That is the reason why e.g. USB Dongle Master Key cannot be decrypted by GameOS without patching DM. But with HV access rights, DM can be easily patched and access to SYSCON can be gained.
*Linux LPAR doesn't have a VUART communication link to Dispatcher Manager.
*I tested VUART 10 on GameOS with PSGroove and it's there.  
*On GamesOS, '''_ss_multiplexer''' accesses DM (VUART 10)


{| class="wikitable FCK__ShowTableBorders"
{| class="wikitable FCK__ShowTableBorders"
|-
|-
! Index
! Packet ID
! Address of VUART object in HV dump
! Description
! Description
|-
|-
| 0
| 0x18001
| 0x0060FD20
| Construct Service Port
| This VUART is connected with the '''VUART 0 (/dev/sc0)''' of LPAR 1
|-
| 1
| 0x0060FE20
| This VUART is connected with the '''VUART 1 (/dev/sc1)''' of LPAR 1
|-
| 2
| 0x0060FF20
| This VUART is not connected to some peer VUART but i guess that it should be connected to '''VUART 2 (/dev/sc2)''' of LPAR1
|-
| 3
| 0x006124E0
| This VUART is connected with the '''VUART 3 (/dev/sc3)''' of LPAR 1
|-
|-
| 4
| 0x18002
| 0x00612DF0
| Destruct Service Port
| '''lv1_get_rtc''' and '''syscall 0x10036''' communicate with this VUART.
|}
|}


== Interrupt Handling ==
=== Dispatcher Manager Messages ===


spider_sc_interrupt_handler - 0x0020A68C (3.15)
==== Dispatcher Manager Header  ====


== Methods ==
*Payload follows after header
*Payload is a SS packet
<pre>struct dispmgr_header
{
    uint32_t request_id;
    uint32_t function_id;
    uint32_t request_size;        /* payload size of request */
    uint32_t response_size;        /* payload size of response */
}
</pre>
=== Packet ID - SS ID Mapping ===


sc_vuart_4_get_peer_vuart - 0x002ED384 (3.15)  
*Before DM routes a received request to a service provider (HV Process) it consults SPM
*DM sends a request to SPM
*Request contains SS ID and Subject ID (laid and paid)
*DM obtains SS ID by mapping Packet ID


sc_send - 0x0020A908 (3.15)
Here is the mapping table i extracted from HV Process 3 where SPM and DM run:


sc_receive - 0x0020A354 (3.15)
{| class="wikitable FCK__ShowTableBorders"
|-
! Packet ID
! SS ID
|-
| 0x2001
| 0x34
|-
| 0x2002
| 0x35
|-
| 0x2003
| 0x36
|-
| 0x2004
| 0x37
|-
| 0x2005
| 0x38
|-
| 0x2006
| 0x39
|-
| 0x200A
| 0x3D
|-
| 0x200B
| 0x3E
|-
| 0x200C
| 0x3F
|-
| 0x200D
| 0x40
|-
| 0x200E
| 0x41
|-
| 0x2012
| 0x7B
|-
| 0x2013
| 0x7C
|-
| 0x2014
| 0x7E
|-
| 0x2015
| 0x7F
|-
| 0x2016
| 0x7D
|-
| 0x2017
| 0x80
|}


sc_vuart_rx_trigger_callback - 0x002ED470 (3.15)
== 0x25000 - User Token Manager  ==


== lv1_get_rtc  ==
{| class="wikitable FCK__ShowTableBorders"
|-
! Packet ID
! Description
|-
| 0x25001
| Encrypt User Token
|-
| 0x25002
| Decrypt User Token
|}


*'''lv1_get_rtc''' communicates with SC VUART 4.
=== User Token  ===
*20 bytes are written to the peer VUART of SC VUART 4.
*After a request is sent to SC VUART 4, '''lv1_get_rtc''' busy waits until SC VUART 4 receive data buffer is not empty.
*When SC VUART 4 receive data buffer is not empty, '''lv1_get_rtc''' reads 24 bytes from the VUART.


== SYSCON Protocol ==
*Before User Token Manager encrypts a received user token it checks it's format.
*User Tokens are processed by '''spu_utoken_processor.self'''
*Before User Token is processed, User Token Manager reads IDPS by sending SS requests to Indi Info Manager (packet ids 0x17001 and 0x17002). Indi Info Manager runs in HV Process 5.


* I was able to enable SYSCON Manager debug messages in HV Process 5
==== User Token Format  ====
* Messages sent to SYSCON are at least '''0x10''' bytes of size. SC VUARTs check it before sending the messages to SYSCON.
<pre>stuct user_token_attr
* The header size of the SYSCON messages is '''0x10''' bytes.
{
 
    uint32_t type;                                /* 0x00000001, value&nbsp;!= 0x00000001 means attribute list ends here */
=== Packet Header ===
    uint32_t size;                                /* 8 + sizeof(data) */
 
    /* data follows here, size of data may be 0 */
* Packet header is of size '''0x10''' bytes.
}
* At offset '''0x6''' of SYSCON packet is the header checksum which is of size '''2''' bytes.
* '''The header checkum is just a sum of first 6 header bytes and 0x8000 constant'''
* The '''2nd byte''' in every SYSCON message has to be '''1''' or else the function '''sc_send''' fails.
* The '''word''' at offset '''0x8''' is the '''SC VUART index'''.
* The '''half-words''' at offset '''0xC''' and '''0xE''' have to be equal or the function '''sc_send''' fails.


<pre>
struct user_token
struct sc_hdr
{
{
     uint8_t field0;
     uint32_t magic;                               /* 0x73757400 = "sut\0" */
     uint8_t field1;         /* always 1 */
     uint32_t format_version;                       /* 0x00000001 */
     uint8_t field2[4];
    uint64_t size;
     uint16_t cksum;         /* header checksum */
     uint8_t idps[16];
     uint32_t index;         /* syscon index (0 - /dev/sc0, 1 - /dev/sc1, 2 - /dev/sc2, 3 - /dev/sc3) */
     uint64_t expire_date;
     uint16_t size1;         /* body size */
     uint64_t capability;
     uint16_t size2;         /* body size */
    union
};
    {
        stuct user_token_attr attrs[0];
        uint8_t dummy[3072];
     } attrs;
    /* 0xC30 */
     uint8_t digest[20];
}
</pre>
</pre>
= LPAR Memory Management  =


==== Calculating Packet Header Checksum ====
== Memory Region class  ==


<pre>
This class is the base class for different memory region types.
/* calculating SC packet header checksum */


/*
=== vtable ===
  * sc_hdr_cksum
*/
uint16_t sc_hdr_cksum(struct sc_hdr *sc_hdr)
{
    uint8_t *ptr;
    uint32_t sum;


    ptr = (uint8_t *) sc_hdr;
0x003578B0 (3.15)  
    sum = 0;


    for (i = 0; i < 6; i++)
=== Member variables  ===
        sum += *ptr++;


    sum += 0x8000;
offset 0x40 - pointer to LPAR object that owns this memory region


    return sum & 0xffff;
offset 0x48 - type of memory region (8 bytes)
}


struct sc_hdr sc_hdr;
offset 0x50 - LPAR start address of memory region


memset(&sc_hdr, 0, sizeof(sc_hdr));
offset 0x58 - size of memory region (8 bytes)  


sc_hdr.cksum = sc_hdr_cksum(sc_hdr);
offset 0x60 - flags (8 bytes)  


/* fill sc header here */
offset 0xA0 - log2 of page size


sc_hdr.cksum = sc_hdr_cksum(sc_hdr);
=== Generating New LPAR Memory Region Addresses ===
</pre>


=== Packet Body ===
generate_new_lpar_mem_region_address(?, memory region size, log2(page size), ?, ?) - 002C82E8 (3.15)


* Packet body follows packet header
generate_new_lpar_mem_region_address - 002C6570 (3.41)
* Packet body size is stored at offset '''0xC''' and '''0xE''' in packet header and is of size 2 bytes


=== Reading SYSCON EPROM (NVS Service) ===
*The function returns a new LPAR memory region address.
*This method is used e.g. in all HV calls which create any kind of memory regions, e.g. '''lv1_allocate_memory''', '''lv1_map_htab''', '''lv1_undocumented_function_114''', '''lv1_construct_logical_spe''', '''lv1_map_device_mmio_region''' or '''syscall 0x10040'''.


Here is a command which is sent to SYSCON to read 1 byte of EPROM at offset 0x48C07 (Product Mode):
==== Encoding LPAR Memory Region Start Addresses and Sizes ====
0x14 <span style="background:#00FF00">0x01</span> 0x00 0x00 0x00 0x00 <span style="background:#FF0000">0x80 0x15</span> <span style="background:#FFFF00">0x00 0x00 0x00 0x00</span> <span style="background:#00FFFF">0x00 0x04</span> <span style="background:#00FFFF">0x00 0x04</span> 0x20 0x02 0x07 0x01


And here is the response to the above request:
*Size of LPAR memory region is encoded in the LPAR memory region start address.
0x14 <span style="background:#00FF00">0x01</span> 0x00 0x00 0x00 0x00 <span style="background:#FF0000">0x80 0x15</span> <span style="background:#FFFF00">0x00 0x00 0x00 0x03</span> <span style="background:#00FFFF">0x00 0x05</span> <span style="background:#00FFFF">0x00 0x05</span> 0x00 0x02 0x07 0x01 0xff
*That is why e.g. the LPAR Memory Region Start Addresses of LPAR Memory Region of size 4096 byte begin with '''0x300000000000''', '''0x300000000000 >> 42 = 0xC = log2(4096)'''.
*Each LPAR has a counter (8 bytes) which is incremented by 1 every time a new LPAR Memory Region is created.
*Before incrementing, the counter is shifted left by '''log2(LPAR Memory Region Size)''' and ored with '''log2(LPAR Memory Region Size) << 42'''.


=== PCI Bus Power ===
LPAR Memory Region Start Address >> 42 = log2(LPAR Memory Region Size)


* '''Used by PS2EMU System Manager in HV process 9 when PS2 EMU is booted'''
LPAR Memory Region Start Address = (log2(LPAR Memory Region Size) << 42) |
    (counter << log2(LPAR Memory Region Size))


==== PCI Bus Power On ====
===== LPAR Memory Region Address Counter =====


'''Request to SC1:'''
*LPAR Memory Region Address Counter is stored at address: '''0x38(LPAR ptr) + 0x9E8'''
0x10 0x01 0x00 0x00 0x00 0x00 0x80 0x11 0x00 0x00 0x00 0x00 0x00 0x02 0x00 0x02 0x31 0x01
*LPAR1's Memory Region Address Counter is at address '''0x00677A48''' in HV dump 3.15
*LPAR2's Memory Region Address Counter is at address '''0x007632D8''' in HV dump 3.15
*LPAR1's Memory Region Address Counter is at address '''0x00677A48''' in HV dump 3.41
*LPAR2's Memory Region Address Counter is at address '''0x00161E68''' in HV dump 3.41


==== PCI Bus Power Off ====
== Physical Memory Region class  ==


'''Request to SC1:'''
This type of memory region is created e.g. in '''lv1_allocate_memory''' HV call or in '''syscall 0x10000'''.
0x10 0x01 0x00 0x00 0x00 0x00 0x80 0x11 0x00 0x00 0x00 0x00 0x00 0x02 0x00 0x02 0x31 0x00


=== Ring Buzzer ===
=== vtable  ===


'''Request:'''
0x00357D08 (3.15)
0x16 0x01 0x00 0x00 0x00 0x00 0x80 0x17 0x00 0x00 0x00 0x00 0x00 0x08 0x00 0x08 0x20 0x00 0x00 0x00 0x00 0x00 0x00 0x00


=SYSCON=
=== Member variables  ===
Crossreference: [http://wiki.gitbrew.org/index.php/PS3:HvReverseEngineering#SYSCON gitbrew.org::SYSCON] <br />


SYSCON MMIO registers can be accessed on Linux with a driver using lv1_undocumented_function_114, e.g. '''ps3sbmmio'''.
offset 0xB0 - pointer to object that stores a list of addresses of physical pages owned by this memory region
Use ps3sbmmio device driver carefully, an access at some addresses could shutdown your PS3.


==Packet Header==
offset 0xB8 - pointer to LPAR object that owns this memory region


* Size is '''0x10'''.
offset 0xC0 - reference counter (8 bytes)


<pre>
=== Objects  ===
struct sc_hdr {
    uint8_t service_id;
    uint8_t version;              /* must be 1 !!! */
    uint16_t transaction_id;      /* returned in response */
    uint8_t res[2];
    uint16_t cksum;              /* checksum of first 6 header bytes */
    uint32_t communication_tag;  /* SYSCON tag: 0-4 */
    uint16_t payload_size[2];    /* body size */
};
</pre>


==Sending Packets==
Here is the list of physical memory region objects i found in HV 3.15.


* Before sending new packet to SYSCON, the Hypervisor checks 2 words at offsets 0x2400008DFF0 and 0x2400008CFF4.
{| class="wikitable FCK__ShowTableBorders"
* The Hypervisor busy waits until (value + 1) at offset 0x2400008CFF4 is NOT equal to value at offset 0x2400008DFF0.
|-
* The packet is sent with 4 byte transfers.
! Address in HV dump
* First, the Hypervisor sends the header of the packet, 4 word transfers.
! LPAR id
* The header is written beginning at the address 0x2400008D000.
! LPAR Start Address
* After that the Hypervisor sends the body of the packet, with 4 byte transfers too.
! Size
* The body is written beginning at the address 0x2400008D010.
! Flags
* If the packet size is NOT divisible by 4 then the Hypervisor sends the remaining bytes (at most 3) as a word padded with 0s.
! log2(Page Size)
* After the packet body was written, the Hypervisor calculates checksum of the whole packet and writes it at the address where the last word of packet body was written + 4.
! Physical Page Addresses
<pre>
|-
uint32_t cksum = 0;
| 0x006B5510
 
| 1  
for (i = 0; i < packet_size; i++)
| 0x300000001000
    cksum -= packet[i];
| 0x1000
 
| 0x0
cksum = cksum & 0xffff;
| 0xC
</pre>
| 0x672000
* After the packet checksum was written, the Hypervisor reads the value at offset 0x2400008DFF0, modifies it and stores back:
|-
<pre>
| 0x006B5E50
value = value + 1;
| 1
value &= 0xffff;
| 0x440000040000
value = (value << 16) | value;
| 0x20000
</pre>
| 0x0
* To notify the SYSCON about the new packet, the Hypervisor writes 0x1 to address 0x2400008E100.
| 0x11
| 0x6C0000
|-
| 0x006B6980
| 1
| 0x440000060000
| 0x20000
| 0x0
| 0x11
| 0x6E0000
|-
| 0x006B7F00
| 1  
| 0x400000040000
| 0x10000
| 0x0
| 0x10
| 0x100000
|-
| 0x003A80F0
| 2
| 0x6C0058000000
| 0x7000000
| 0x4
| 0x18
| 0x1000000 - 0x7000000
|-
| 0x003BE800
| 2
| 0x300000047000
| 0x1000
| 0x0
| 0xC
| 0x1FA000
|-
| 0x006BDAA0
| 2
| 0x0
| 0x8000000
| 0x8
| 0x1B (single huge page)  
| 0x8000000
|}
 
So, Linux kernel should be located at physical address 0x8000000 and Linux syscall handler at 0x8000C00. Too bad that the HV dump is not large enough.  


==Receiving Packets==
=== GameOS Physical Memory Regions  ===


* The Hypervisor installs an interrupt handler for the SYSCON.
*GameOS allocates nearly all physical memory of PS3 for itself&nbsp;!!! That is why new HV calls '''lv1_allocate_memory''' with large memory region sizes will fail.  
* First, the Hypervisor reads a word from address 0x2400008E000, ors it with 0xFFFFFFFD and writes the value back.
*So when someone wants a large piece of physical memory, he can borrow it from GameOS's LPAR memory region that starts at '''0x700020000000'''. It can be used for example to send update packages to Update Manager which are very large.
* Then, the Hypervisor reads a word from address 0x2400008E004 and tests if bit 0x2 is set or not. The bit 0x2 should be not 0 or else the Hypervisor panics.
* After that, the Hypervisor reads a word at address 0x2400008CFF0 and 0x2400008DFF4. If there is a new packet pending from SYSCON, then the (value + 1) at 0x2400008CFF0 should be equal the value at 0x2400008DFF4.
* The Hypervisor reads the header of the packet beginning at the address 0x2400008C000.
* The header is read with 4 word transfers by the Hypervisor.
* The byte at offset 1 in the packet header must be 1 or else the Hypervisor discards the packet as invalid.
* The Hypervisor calculates the checksum of the packet header and checks it with the checksum stored in the header. If they don't match then the Hypervisor discards the packet.
* The Hypervisor reads the body of the packet beginning at the address 0x2400008C010.
* The header and the body of the received packet can be read as many times as you want !!! They remain until next SYSCON packet is received
which gives us the possibility to communicate with SYSCON on Linux easily :)


==Test==
Here is the list of physical memory regions of GameOS i found in HV 3.41:


'''1. Before sending SYSCON packet''':
{| class="wikitable FCK__ShowTableBorders"
<pre>
|-
root@debian-hdd:~# dd if=/dev/ps3sbmmio bs=1 count=4 skip=$((0x8cff4)) status=noxfer | hexdump -C
! Start Address
! Size
! Access Right
! Max Page Size
! Flags
! Real Addresses
|-
| 0x0
| 0x1000000
| 0x3
| 0x18
| 0x8
| 0x1000000 - 0x1FFF000
|-
| 0x500000300000
| 0xA0000
| 0x3
| 0x10
| 0x8
| 0x380000 - 0x38F000, 0x3B0000 - 0x3BF000, 0x1E0000 - 0x1FF000, 0x3C0000 - 0x3FF000, 0xFF00000 - 0xFF1F000
|-
| 0x700020000000
| 0xE900000 (huge memory region)  
| 0x3
| 0x14
| 0x0
| 0x400000 - 0x5FF000, 0x800000 - 0xFFF000, 0x2000000 - 0xFEFF000
|}


00000000 01 18 01 18                                      |....|
== HTAB Memory Region class ==
00000004


root@debian-hdd:~# dd if=/dev/ps3sbmmio bs=1 count=4 skip=$((0x8dff0)) status=noxfer | hexdump -C
This memory region is created when a HTAB is mapped into LPAR's address space. It's created in '''lv1_map_htab''' HV call.


00000000 01 18 01 18                                      |....|
=== vtable ===
00000004


root@debian-hdd:~# dd if=/dev/ps3sbmmio bs=1 count=4 skip=$((0x8cff0)) status=noxfer | hexdump -C
0x00357C98 (3.15)  


00000000 01 24 01 24                                      |.$.$|
=== Member variables ===
00000004


root@debian-hdd:~# dd if=/dev/ps3sbmmio bs=1 count=4 skip=$((0x8dff4)) status=noxfer | hexdump -C
offset 0xB0 - pointer to VAS object that owns the HTAB


00000000 01 24 01 24                                      |.$.$|
=== Objects ===
00000004
</pre>


'''2. SYSCON packet was sent by using ps3dm_scm read_eprom.'''
Here is the list of HTAB memory region objects i found in HV 3.15.  


'''3. After sending SYSCON packet''':
{| class="wikitable FCK__ShowTableBorders"
<pre>
|-
root@debian-hdd:~# dd if=/dev/ps3sbmmio bs=1 count=4 skip=$((0x8cff4)) status=noxfer | hexdump -C
! Address in HV dump
! LPAR id
! VAS id
! LPAR Start Address
! Size
! Flags
! log2(Page Size)
|-
| 0x001FE0F0
| 2
| 3  
| 0x500000C00000
| 0x100000
| 0xC000000000000000
| 0x14
|-
| 0x003BD850
| 2
| 3
| 0x500004300000
| 0x100000
| 0xC000000000000000
| 0x14
|-
| 0x003BDEA0
| 2
| 3
| 0x500004500000
| 0x100000
| 0xC000000000000000
| 0x14
|}


00000000 01 19 01 19                                      |....|
=== GameOS HTAB ===
00000004


root@debian-hdd:~# dd if=/dev/ps3sbmmio bs=1 count=4 skip=$((0x8dff0)) status=noxfer | hexdump -C
*HTAB of GameOS is already mapped into address space of GameOS so that is why HV call '''lv1_map_htab''' will fail until you unmap it with '''lv1_unmap_htab'''
*Effective address of GameOS HTAB is '''0x800000000F000000'''
*Virtual address of GameOS HTAB is '''0xF000000'''
*Size of GameOS HTAB is '''0x40000'''
*GameOS HTAB supports large pages of size '''64K''' and '''1M'''
*GameOS HTAB can be easily dumped by reading 0x40000 bytes at EA 0x800000000F000000


00000000 01 19 01 19                                      |....|
=== GameOS SLB ===
00000004


root@debian-hdd:~# dd if=/dev/ps3sbmmio bs=1 count=4 skip=$((0x8cff0)) status=noxfer | hexdump -C
Here is the dump of SLB entries from GameOS 3.41:  
 
<pre>0x8000000008000000  0x0000000000000500
00000000 01 25 01 25                                      |.%.%|
0x8000000208000000  0x0000000000020500
00000004
0x8000000300000000  0x0000000000030510
 
0x0000000000000000  0x0000000000000000
root@debian-hdd:~# dd if=/dev/ps3sbmmio bs=1 count=4 skip=$((0x8dff4)) status=noxfer | hexdump -C
0x0000000080000000  0x0000000000038C00
 
0x00000000A0000000  0x000000000003AC00
00000000 01 25 01 25                                      |.%.%|
0x00000000C0000000  0x000000000003CC00
00000004
0x0000000000000000  0x0000000000000000
0x0000000000000000  0x0000000000000000
0x0000000000000000  0x0000000000000000
0x0000000000000000  0x0000000000000000
0x0000000000000000  0x0000000000000000
0x0000000000000000  0x0000000000000000
0x0000000000000000  0x0000000000000000
0x0000000000000000  0x0000000000000000
0x0000000000000000  0x0000000000000000
0x0000000000000000  0x0000000000000000
0x0000000000000000  0x0000000000000000
0x0000000000000000  0x0000000000000000
0x0000000000000000  0x0000000000000000
0x0000000000000000  0x0000000000000000
0x0000000000000000  0x0000000000000000
0x0000000000000000  0x0000000000000000
0x0000000000000000  0x0000000000000000
0x0000000000000000  0x0000000000000000
0x0000000000000000  0x0000000000000000
0x0000000000000000  0x0000000000000000
0x0000000000000000  0x0000000000000000
0x0000000000000000  0x0000000000000000
0x0000000000000000  0x0000000000000000
0x0000000000000000  0x0000000000000000
0x0000000000000000  0x0000000000000000
0x8000000010057960  0x8000000000313E78
0x8000000010057940  0x0000000000000000
0x800000000001B698  0x0000000000000000
0x8000000010057930  0x8000000000490708
0x80000000002B6C68  0x80000000003DE928
0x8000000010057EC0  0x80000000003DE920
0x0000000000000000  0x8000000000309810
0x80000000004B3000  0x0000000000000000
0x8000000010057CC0  0x0000000000000000
0x80000000004AF000  0x80000000004E1F00
0x80000000100579C8  0x80000000100579C0
0x80000000100579E0  0x2400002200000000
0x80000000004CF5B0  0x8000000200012000
0x80000000100579F8  0x80000000100579F0
0x8000000010057A10  0x80000000004A3A00
0x80000000004CF5B0  0x80000000004C8D00
0x800000000001BF6C  0x80000000004CD400
0x800000000001B698  0x80000000004C8100
0x80000000100579D0  0x80000000004B48C0
0x0000000000001C08  0x0000000000000000
0x8000000010057A78  0x8000000010057A70
0x8000000010057A90  0x0000000000000000
0x80000000004CF90C 0x0000000000000000
0x0000000000000000  0x8000000010057A80
0x8000000010057A90  0x8000000000309810
0x80000000004CF62C  0x0000000000000000
0x8000000010057CC0  0x0000000000000000
0x80000000004AF000  0x80000000004B48C0
0x00004000001C0000  0x0000000000000001
0x00000000D0000000  0x0000A8E3EE7D10DA
0x0000000000000000 0x0000000000000000
0x80000000004D8088  0x80000000004D9000
</pre>
</pre>
== SPE MMIO Memory Region class  ==


'''4. Received Header'''
This type of memory region represents MMIO memory region of a SPE. It's created e.g. in '''lv1_construct_logical_spe''' or in '''syscall 0x10040'''.


<pre>
=== vtable  ===
root@debian-hdd:~# dd if=/dev/ps3sbmmio bs=1 count=16 skip=$((0x8c000)) status=noxfer | hexdump -C


00000000  14 01 00 00 00 00 80 15 00 00 00 03 00 05 00 05  |................|
0x003583F8 (3.15)
00000010


</pre>
=== Member variables  ===


'''5. Received Body'''
=== Objects  ===


<pre>
Here is the list of SPE memory region objects i found in HV 3.15.
root@debian-hdd:~# dd if=/dev/ps3sbmmio bs=1 count=8 skip=$((0x8c010)) status=noxfer | hexdump -C


00000000  00 00 c7 01 ff 00 00 00                          |..Ç.ÿ...|
{| class="wikitable FCK__ShowTableBorders"
00000008
|-
</pre>
! Address in HV dump
 
! LPAR id
==Examples==
! SPE
 
! LPAR Start Address
===Get RTC===
! Size
 
! Physical Address
* Used by LV1 call '''lv1_get_rtc'''
! Flags
* Communication with SYSCON 4
! log2(Page Size)
 
|-
Request:
| 0x003ABC20
<pre>
| 2
# write packet
| 1
 
| 0x4C0000880000
# echo "0: 13 01 0000 0000 8014 00000004 0001 0001 33 00 00 00 0000ff1f" | xxd -c256 -r | \
| 0x80000
      dd of=/dev/ps3sbmmio bs=1 seek=$((0x8d000)) status=noxfer
| 0x20000080000
 
| 0xA000000000000000
# dump packet counter
| 0xC
 
|-
# dd if=/dev/ps3sbmmio bs=1 count=4 skip=$((0x8dff0)) status=noxfer | hexdump -C
| 0x003AAD70
 
| 2
00000000  00 c0 00 c0                                      |.À.À|
| 2
00000004
| 0x4C0000980000
 
| 0x80000
# increment packet counter
| 0x20000100000
 
| 0xA000000000000000
echo "0: 00c1 00c1" | xxd -c256 -r | dd of=/dev/ps3sbmmio bs=1 seek=$((0x8dff0)) status=noxfer
| 0xC
|-
| 0x003A8880
| 2
| 3
| 0x4C0000780000
| 0x80000
| 0x20000180000
| 0xA000000000000000
| 0xC
|-
| 0x003B4F70
| 2
| 4  
| 0x4C0000A80000
| 0x80000
| 0x20000200000
| 0xA000000000000000
| 0xC
|-
| 0x003AB700
| 2
| 5
| 0x4C0000680000
| 0x80000
| 0x20000280000
| 0xA000000000000000
| 0xC
|-
| 0x003B5BE0
| 2
| 6
| 0x4C0000B80000
| 0x80000
| 0x20000300000
| 0xA000000000000000
| 0xC
|}


# kick packet
== SPE Shadow Registers Memory Region class  ==


# echo "0: 00000001" | xxd -c256 -r | dd of=/dev/ps3sbmmio bs=1 seek=$((0x8e100)) status=noxfer
This type of memory region represents shadow registers memory region of a SPE. It's created e.g. in '''lv1_construct_logical_spe''' or in '''syscall 0x10040'''.


</pre>
=== vtable  ===


Response:
0x00358448 (3.15)


<pre>
=== Objects  ===
# dump packet counter


# dd if=/dev/ps3sbmmio bs=1 count=4 skip=$((0x8dff0)) status=noxfer | hexdump -C
Here is the list of SPE Shadow Registers memory region objects i found in HV 3.15.


00000000  00 c1 00 c1                                      |.Á.Á|
{| class="wikitable FCK__ShowTableBorders"
00000004
|-
 
! Address in HV dump
# dump response packet
! LPAR id
 
! SPE
# dd if=/dev/ps3sbmmio bs=1 count=24 skip=$((0x8c000)) status=noxfer | hexdump -C
! LPAR Start Address
 
! Size
00000000  13 01 00 00 00 00 80 14  00 00 00 04 00 08 00 08  |................|
! Physical Address
00000010  00 00 00 00 15 af 47 6b                          |.....¯Gk|
! Flags
00000018
! log2(Page Size)
</pre>
|-
| 0x003ABDA0
| 2
| 1
| 0x300000012000
| 0x1000
| -
| 0xA000000000000000
| 0xC
|-
| 0x003B4290
| 2
| 2
| 0x300000014000
| 0x1000
| -
| 0xA000000000000000
| 0xC
|-
| 0x003A8A00
| 2
| 3
| 0x300000010000
| 0x1000
| -
| 0xA000000000000000
| 0xC
|-
| 0x003B50F0
| 2
| 4
| 0x300000016000
| 0x1000
| -
| 0xA000000000000000
| 0xC
|-
| 0x001FFC90
| 2
| 5
| 0x30000000E000
| 0x1000
| -
| 0xA000000000000000
| 0xC
|-
| 0x003AE5B0
| 2
| 6
| 0x300000018000
| 0x1000
| -
| 0xA000000000000000
| 0xC
|}


===Ring Buzzer===
== Device MMIO Memory Region class  ==


* Used by System Manager
This type of memory region is created when a device MMIO region is mapped into LPAR address space, e.g. in '''lv1_map_device_mmio_region'''.
* Communication with SYSCON 1


Request:
=== vtable  ===


<pre>
0x00352468 (3.15)
# write packet


# echo "0: 16 01 1620 0000 804d 00000001 0008 0008 20 29 0a 00 000001b6 0000fdcb" | xxd -c256 -r | \
=== Member variables  ===
      dd of=/dev/ps3sbmmio bs=1 seek=$((0x8d000)) status=noxfer


# dump packet counter
offset 0xA8 - physical address where the device MMIO region is mapped to


# dd if=/dev/ps3sbmmio bs=1 count=4 skip=$((0x8dff0)) status=noxfer | hexdump -C
=== Objects  ===


00000000  00 c0 00 c0                                      |.À.À|
Here is the list of Device MMIO memory region objects i found in HV 3.15.  
00000004


# increment packet counter
{| class="wikitable FCK__ShowTableBorders"
|-
! Address in HV dump
! LPAR id
! LPAR Start Address
! Size
! Flags
! log2(Page Size)
! Physical Address
! Device
|-
| 0x001FDF00
| 2
| 0x4000001D0000
| 0x10000
| 0x8000000000000000
| 0xC
| 0x24003010000
| USB controller
|-
| 0x003B3850
| 2
| 0x400000200000
| 0x10000
| 0x8000000000000000
| 0xC
| 0x24003020000
| USB controller
|-
| 0x003B6E50
| 2
| 0x4000001E0000
| 0x10000
| 0x8000000000000000
| 0xC
| 0x24003810000
| USB controller
|-
| 0x003B9950
| 2
| 0x4000001F0000
| 0x10000
| 0x8000000000000000
| 0xC
| 0x24003820000
| USB controller
|}


echo "0: 00c1 00c1" | xxd -c256 -r | dd of=/dev/ps3sbmmio bs=1 seek=$((0x8dff0)) status=noxfer
== GPU Device Memory Region class  ==


# kick packet
This type of memory region is created e.g. in '''lv1_gpu_open''', '''lv1_gpu_device_map''' and '''lv1_undocumented_function_114'''.


# echo "0: 00000001" | xxd -c256 -r | dd of=/dev/ps3sbmmio bs=1 seek=$((0x8e100)) status=noxfer
=== vtable  ===


# you should hear a beep
0x00357C48 (3.15)


</pre>
=== Member variables  ===


Response:
offset 0xA8 - physical address


<pre>
=== Objects  ===
# dump packet counter


# dd if=/dev/ps3sbmmio bs=1 count=4 skip=$((0x8dff0)) status=noxfer | hexdump -C
Here is the list of Device GPU memory region objects i found in HV 3.15.


00000000  00 c1 00 c1                                      |.Á.Á|
{| class="wikitable FCK__ShowTableBorders"
00000004
|-
 
! Address in HV dump
# dump response packet
! LPAR id
 
! LPAR Start Address
# dd if=/dev/ps3sbmmio bs=1 count=24 skip=$((0x8c000)) status=noxfer | hexdump -C
! Size
00000000  16 01 16 20 00 00 80 4d  00 00 00 01 00 01 00 01  |... ...M........|
! Flags
00000010  00 00 00 00 00 00 fe e3                          |......þã|
! log2(Page Size)  
00000018
! Physical Address
 
|-
</pre>
| 0x003AF380
 
| 2
=Isolation=
| 0x700190000000
Crossreference: [http://wiki.gitbrew.org/wikibrew/PS3:HvReverseEngineering#Isolation gitbrew.org::Isolation] <br />
| 0xFE00000
 
| 0x8000000000000000
==Running Isolated SPE Modules On OtherOS++ Linux==
| 0x14
 
| 0x28080000000
* spp_verifier is a kernel module which shows you how to run isolated SPE modules on OtherOS++ Linux.
|-
* It decrypts default.spp profile
| 0x003AF500
* Tested on 3.41 and 3.55.
| 2
* You can modify it easily to run other SPE modules.
| 0x4000001A0000
 
| 0xC000
<pre>
| 0x8000000000000000
root@debian-hdd:/home/glevand/spp_verifier# cat spp_verifier_355.self > /proc/spp_verifier/spu
| 0xC
root@debian-hdd:/home/glevand/spp_verifier# cat default_355.spp > /proc/spp_verifier/profile
| 0x3C0000
root@debian-hdd:/home/glevand/spp_verifier# echo 1 > /proc/spp_verifier/run
|-
root@debian-hdd:/home/glevand/spp_verifier# cat /proc/spp_verifier/debug
| 0x003AF680
| 2
| 0x4800006C0000
| 0x40000
| 0x8000000000000000
| 0xC
| 0x2808FE00000
|-
| 0x003AFC30
| 2
| 0x440000380000
| 0x20000
| 0x8000000000000000
| 0xC
| 0x28000C00000
|-
| 0x003BB420
| 2
| 0x3C0000108000
| 0x8000
| 0x8000000000000000
| 0xC
| 0x28000080100
|}


PPE id (0x0000000000000001) VAS id (0x0000000000000002)
== Direct Map Memory Region class ==
lv1_construct_logical_spe (0x00000000)
SPE id (0x000000000000002b)
lv1_undocumented_function_209 (0x00000000)
shadow execution status (0x0000000000000002)
lv1_get_spe_interrupt_status(1) (0x00000000)
interrupt status 1 (0x0000000000000000)
sleep
shadow execution status (0x0000000000000002)
lv1_get_spe_interrupt_status(1) (0x00000000)
interrupt status 1 (0x0000000000000001)
ea (0xc000000002920000) esid (0xc000000008000000) vsid (0x0000408f92c94500)
lv1_undocumented_function_62 (0x00000000)
lv1_clear_spe_interrupt_status(1) (0x00000000)
lv1_undocumented_function_168 (0x00000000)
sleep
shadow execution status (0x0000000000000007)
lv1_get_spe_interrupt_status(1) (0x00000000)
interrupt status 1 (0x0000000000000000)
lv1_get_spe_interrupt_status(2) (0x00000000)
interrupt status 2 (0x0000000000000000)
out interrupt mbox (0x0000000000000002)
out interrupt mbox (0x0000000000000002)
lv1_undocumented_function_167 (0x00000000)
lv1_clear_spe_interrupt_status (0x00000000)
lv1_undocumented_function_200 (0x00000000)
sleep
shadow execution status (0x000000000000000b)
lv1_get_spe_interrupt_status(1) (0x00000000)
interrupt status 1 (0x0000000000000000)
shadow execution status (0x000000000000000b)
problem status (0x01000082)
lv1_destruct_logical_spe (0x00000000)


root@debian-hdd:/home/glevand/spp_verifier# hexdump -C /proc/spp_verifier/profile | less
This type of memory region is created in HV call '''lv1_undocumented_function_114'''.
...
'''lv1_undocumented_function_114''' allows you to map any memory address into LPAR's memory address.
...
 
00000200  00 02 00 05 00 00 20 a0  00 00 00 01 00 03 00 00  |...... ........|
* The HV call '''lv1_undocumented_function_115''' destroys a memory region of this type.
00000210  00 00 00 00 00 00 00 01  00 00 00 0e 00 00 00 00  |................|
* HV allows GameOS to create objects of this type of size 0 only !!! But it can be exploited with a dangling HTAB entry.
00000220  00 00 02 88 00 00 00 01  10 70 00 00 01 00 00 01  |.........p......|
 
00000230  00 00 00 00 00 00 00 00  53 43 45 5f 43 45 4c 4c  |........SCE_CELL|
=== vtable ===
00000240 4f 53 5f 50 4d 45 00 00  00 00 00 00 00 00 00 00  |OS_PME..........|
 
00000250  00 00 00 00 00 00 00 00  00 00 00 06 00 00 02 50  |...............P|
0x00357C48 (3.15)
00000260  10 70 00 00 01 00 00 01  2f 66 6c 68 2f 6f 73 2f  |.p....../flh/os/|
 
00000270  74 68 69 73 5f 69 73 5f  64 75 6d 6d 79 00 00 00  |this_is_dummy...|
=== Member variables ===
00000280  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  |................|
 
...
offset 0xA8 - physical address
...
 
</pre>
=== Exploiting HV with memory glitching and HV call lv1_undocumented_function_114 ===
 
Here is a short description of the method i used to exploit HV from GameOS 3.15 and 3.41.


==Using metldr On OtherOS++ Linux==
* First i used the Geohot's method to create a dangling HTAB entry.
* Making memory glitch work on GameOS was the largest of my obstacles but i solved it and i'm able to create a dangling HTAB entry from GameOS within 1-3 minutes.
* Then i created many '''Direct Map Memory Region''' objects of size 0 with HV call '''lv1_undocumented_function_114''' and checked if they are within the page to which the dangling HTAB entry points to.
* When i found one such '''Direct Map Memory Region''' object i patched the size of this object to 0x1000. Then i pointed this memory region object to the code of HV call '''lv1_undocumented_function_114''' and patched 4 bytes in this HV call which allows me to create any '''Direct Map Memory Region''' objects without any restrictions.
* Function '''LPAR_construct_direct_mapping_mem_region''' which is used by HV call '''lv1_undocumented_function_114''' has a parameter (register %r9) and when this parameter is not 0 then HV will allow you to create any '''Direct Map Memory Region''' objects without restrictions, but unfortunately the HV call '''lv1_undocumented_function_114''' passes 0 in this parameter, so i just patched it.
* Then i mapped whole HV memory range with the patched HV call '''lv1_undocumented_function_114''' into the address space of GameOS.
* And now you have read/write access to the whole HV.
* $ONY could fix this exploit by disallowing creating of '''Direct Map Memory Region''' objects of size 0, but i know tons of other HV C++ classes which will allow me to exploit the HV in a similar way, so it wouldn't bring $ONY anything :-) And they have to change member variable offsets in those objects to make sure that i cannot patch them easily :-)


* spp_verifier_direct is a kernel module which shows you how to run isolated SPE modules on OtherOS++ Linux by using metldr directly.
== Methods  ==
* It decrypts default.spp profile.
* Tested on 3.41 and 3.55.
* You can modify it easily to run other SPE modules.


<pre>
LPAR_get_memory_region_by_start_address - 0x002C7C40 (3.15)  
root@debian-hdd:/home/glevand/spp_verifier_direct# insmod ./spp_verifier_direct.ko
root@debian-hdd:/home/glevand/spp_verifier_direct# cat metldr > /proc/spp_verifier_direct/metldr
root@debian-hdd:/home/glevand/spp_verifier_direct# cat isoldr_355 > /proc/spp_verifier_direct/isoldr
root@debian-hdd:/home/glevand/spp_verifier_direct# cat RL_FOR_PROGRAM_355.img > /proc/spp_verifier_direct/rvkprg
root@debian-hdd:/home/glevand/spp_verifier_direct# cat EID0 > /proc/spp_verifier_direct/eid0
root@debian-hdd:/home/glevand/spp_verifier_direct# cat spp_verifier_355.self > /proc/spp_verifier_direct/spu
root@debian-hdd:/home/glevand/spp_verifier_direct# cat default_355.spp > /proc/spp_verifier_direct/profile
root@debian-hdd:/home/glevand/spp_verifier_direct# echo 1 > /proc/spp_verifier_direct/run
root@debian-hdd:/home/glevand/spp_verifier_direct# cat /proc/spp_verifier_direct/debug
PPE id (0x0000000000000001) VAS id (0x0000000000000002)
lv1_construct_logical_spe (0x00000000)
SPE id (0x0000000000000033)
lv1_enable_logical_spe (0x00000000)
lv1_set_spe_interrupt_mask(0) (0x00000000)
lv1_set_spe_interrupt_mask(1) (0x00000000)
lv1_set_spe_interrupt_mask(2) (0x00000000)
lv1_set_spe_privilege_state_area_1_register (0x00000000)
ea (0xc000000002680000) esid (0xc000000008000000) vsid (0x0000408f92c94500)
lv1_get_spe_interrupt_status(0) (0x00000000)
lv1_get_spe_interrupt_status(1) (0x00000000)
lv1_get_spe_interrupt_status(2) (0x00000000)
sleep
lv1_get_spe_interrupt_status(0) (0x00000000)
lv1_get_spe_interrupt_status(1) (0x00000000)
lv1_get_spe_interrupt_status(2) (0x00000000)
out interrupt mbox (0x0000000000000001)
lv1_clear_spe_interrupt_status(2) (0x00000000)
transferring EID0, ldr args and revoke list to LS
waiting until MFC transfers are finished
MFC transfers done
out mbox (0x00000001)
sleep
lv1_get_spe_interrupt_status(0) (0x00000000)
lv1_get_spe_interrupt_status(1) (0x00000000)
lv1_get_spe_interrupt_status(2) (0x00000000)
out interrupt mbox (0x0000000000000002)
lv1_clear_spe_interrupt_status(2) (0x00000000)
out mbox (0x00000002)
lv1_clear_spe_interrupt_status(2) (0x00000000)
sleep
lv1_get_spe_interrupt_status(0) (0x00000000)
lv1_get_spe_interrupt_status(1) (0x00000000)
lv1_get_spe_interrupt_status(2) (0x00000000)
problem status (0x01000082)
lv1_destruct_logical_spe (0x00000000)


root@debian-hdd:/home/glevand/spp_verifier_direct# hexdump -C /proc/spp_verifier_direct/profile | less
LPAR_get_memory_region_by_address - 0x002C7DA8 (3.15)
...
...
00000200  00 02 00 05 00 00 20 a0  00 00 00 01 00 03 00 00  |......  ........|
00000210  00 00 00 00 00 00 00 01  00 00 00 0e 00 00 00 00  |................|
00000220  00 00 02 88 00 00 00 01  10 70 00 00 01 00 00 01  |.........p......|
00000230  00 00 00 00 00 00 00 00  53 43 45 5f 43 45 4c 4c  |........SCE_CELL|
00000240  4f 53 5f 50 4d 45 00 00  00 00 00 00 00 00 00 00  |OS_PME..........|
00000250  00 00 00 00 00 00 00 00  00 00 00 06 00 00 02 50  |...............P|
00000260  10 70 00 00 01 00 00 01  2f 66 6c 68 2f 6f 73 2f  |.p....../flh/os/|
00000270  74 68 69 73 5f 69 73 5f  64 75 6d 6d 79 00 00 00  |this_is_dummy...|
00000280  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  |................|
...
...
</pre>


= Gelic Device =
LPAR_mem_addr_to_phys_addr(LPAR id, LPAR address, phys_addr) - 0x002FB8F0 (3.15)
Crossreference: [http://wiki.gitbrew.org/index.php/PS3:HvReverseEngineering#Gelic_Device gitbrew.org::Gelic Device] <br />


==sys.hw.config==
LPAR_construct_direct_mapping_mem_region - 0x002D4D04 (3.15)


* Value of the loader parameter "sys.hw.config" controls if Gelic WLAN is enabled or not.
= Network Devices  =
* Value of the loader parameter "sys.hw.config" is stored in the repository node "sys.hw.config" too.
* If bit '''0x40000''' is set then LV1 allows using Gelic WLAN interface from LV2.
* Value on my PS3 slim '''0x4e00ffff0a03bc3c''' with Gelic WLAN interface disabled. As you can see, the Gelic WLAN interface is disabled and LV1 doesn't allow using of LV1 calls 196 and 195. It returns LV1_CONDITION_NOT_SATISFIED.
* GameOS checks bit '''0x40000''' of the repository node "sys.hw.config" during network initialization and if it's set then LV2 initializes Gelic WLAN interface.
* Check your "sys.hw.config" repository node and if bit '''0x40000''' is set then you are a lucky owner of a PS3 model with the old WLAN interface.
* '''On newer PS3 models, GameOS uses USB interface to communicate with WLAN.'''
* On PS3 models, where bit '''0x40000''' is NOT set in "sys.hw.config" repository node, the new USB interface is used.


''Note:[http://www.ps3devwiki.com/index.php?title=Wifi old vs. new]: Old == CECHA up to CECHK, New == CECHL and later''
== Ethernet Gelic Device  ==


== Control Interface ==
device id = 0


HV calls 195 and 196 are used by GameOS to send commands to Gelic device directly.
MAC Address: 00:1F:A7:C6:2A:C5


=== lv1_undocumented_function_196 ===
device memory base address = 0x24003004000 (size = 0x1000)


==== Parameters ====
== WLAN Gelic Device  ==
 
device id = 0


r3 - LPAR address of data buffer
MAC Address: 02:1F:A7:C6:2A:C5 (locally administered)


r4 - size of data buffer
=== Net Manager  ===


r5 - must be 0
*Net Manager runs in Process 9
*It sends commands to '''/dev/sc1''' to reset WLAN Gelic device
*It opens '''/dev/net0''', sets MAC address and writes device firmware '''eurus_fw.bin''' to WLAN device by using '''ioctl''' syscall


=== lv1_undocumented_function_195 ===
=== /dev/net0  ===


==== Parameters ====
The device supports 3 ioctl commands:


r3 - command (16 bit value)
*0 - 0x002AC10C (3.15)
*1 - 0x002AC250 (3.15)
*2 - EURUS_STAT 0x002AC320 (3.15)


r4 - command data size
=== Methods  ===


r5 - must be 0
net_control_cmd_GELIC_LV1_POST_WLAN_CMD - 0x0024A55C (3.15)


=== Data Buffer ===
net_control_wlan_cmd_GELIC_EURUS_CMD_ASSOC - 0x00246C78 (3.15)


* Data Buffer passed to HV call 196 is divided into 2 parts.
net_control_wlan_cmd_GELIC_EURUS_CMD_START_SCAN - 0x00248A14 (3.15)
* The first 0x800 bytes are for sending and receiving command data
* The remaining 0x800 bytes are for event notification.


=== Command Data Buffer ===
net_control_wlan_cmd_GELIC_EURUS_CMD_SET_WEP_CFG - 0x00249F24 (3.15)


* Every command data sent to Gelic device contains header of size '''0xC'''
net_control_wlan_cmd_GELIC_EURUS_CMD_SET_WPA_CFG - 0x002497B8 (3.15)
* After the header follows the command data
* After the Gelic device processed the command, it notifies LV2 kernel about command completion by sending an interrupt


==== Header ====
= Event Notification  =


* Size is '''0xc'''.
*Event Notfication is used e.g. to notify a LPAR about some event, e.g. device interrupt or notify a LPAR about destruction of another LPAR.
* Byte order is little-endian.
*For example Process 9 is notified through Event Notification when LPAR 2 is destructed.
* Header data in a request command buffer is always all 0s.
*During LPAR construction, Process 9 creates an Outlet object with '''syscall 0x1001A''' and then passes the outlet ID to the '''syscall 0x10009''' that constructs the LINUX LPAR. In this way Process 9 is notified when LINUX LPAR is destructed.


0x0 - command = request command + 1 (2 bytes)
== Outlet class  ==


0x4 - result, 0x1 - success ??? 0x2 - buffer too small ??? (2 bytes)
This is the base Outlet class. There are different types of Outlet and they derive from this base class.


0x6 - body size (2 bytes)
=== vtable  ===


=== Event Data Buffer ===
0x00357DC0 (3.15)


* The Gelic device notifies LV2 kernel by sending an interrupt when new events are available
=== Member variables  ===
* Event Data Buffer has 8 bytes header
* The remaining bytes are divided into event slots
* Each event slot is of size 64 bytes
* Events are in little-endian format


==== Header ====
offset 0x30 - type (8 bytes)


offset 0x0 - GET index (4 bytes)
offset 0x38 - pointer to LPAR that owns this Outlet object


offset 0x4 - PUT index (4 bytes)
offset 0x48 - outlet id (8 bytes)  


* GET index is updated by Gelic driver. The Gelic driver reads events beginning with the event slot at index GET.
offset 0x90 - VIRQ assigned to this Outlet object (4 bytes)
* PUT index is the index of event entry where next Gelic event will be stored by the Gelic device.
* If GET index is equal to PUT index then there are no Gelic events.


=== GameOS ===
== Event Receive Port class  ==


* LV2 syscall 726 sends Gelic device command and blocks until a response from the Gelic device arrives
*This type of Outlet is created e.g. in '''lv1_construct_event_receive_port''' and in '''syscall 0x1001A'''.
* LV2 kernel uses this LV1 interface to send commands to Gelic device internally too, probably for wireless controllers and Wake On WLAN.
*HV calls '''lv1_connect_irq_plug''' and '''lv1_connect_irq_plug_ext''' assigns a VIRQ to Event Receive Port object.
* The system call 726 is used heavily by VSH.


==== Parameters ====
=== vtable  ===


r3 - command (16 bits)
0x00357E88


r4 - effective address of command data buffer
== VUART Outlet  ==


r5 - size of command data buffer
*HV supports only one VUART Outlet per LPAR
*'''lv1_configure_virtual_uart_irq''' constructs a VUART Outlet object and passes the address of LPAR's VUART IRQ Bitmap to HV


=== Commands ===
=== vtable  ===


====Unknown (0x1)====
0x00357DC0


* Used by VSH.
=== VUART IRQ Bitmap  ===
* Command buffer size is '''0x10'''.
* Used in AP mode.
* Enables AP mode ???


====Get AP SSID (0x3)====
*At address 0x38(LPAR ptr) + 0x158 is the VUART IRQ Bitmap owned by HV for LPAR (4 * 8 bytes = 256 bits)
*At address 0x38(LPAR ptr) + 0x150 is stored the physical address of LPAR's VUART IRQ Bitmap that was passed to '''lv1_configure_virtual_uart_irq'''
*When a VUART interrupt is generated by HV then first the VUART IRQ Bitmap owned by HV is updated and then this bitmap is copied to LPAR's VUART IRQ Bitmap, so VUART IRQ Bitmap is stored twice, once in HV and once in LPAR, just like IRQ State Bitmap.
*VUART IRQ Bitmap is not allowed to cross page boundary of LPAR memory region where it is stored. HV checks it and makes sure that it doesn't happen.
*'''GameOS 3.41''' VUART IRQ bitmap is at address '''0x80000000003556E8''' and of size '''32 bytes (256 bits, each bit corresponds to a VUART port)'''.
*'''GameOS 3.15''' VUART IRQ bitmap is at address '''0x8000000000354768'''.


* Command buffer is of size '''0x30'''.
= Logical PPE  =
* Returns SSID in AP mode.


offset 0xC - SSID (32 bytes)
*Logical PPE is used for interrupt management of LPAR.
*A Logical PPE object is created in '''syscall 0x10005'''. It' used e.g. in Process 9 during LPAR construction.
*'''syscall 0x10007''' activates a Logical PPE object
*0x67F0(HSPRG0) - pointer to currently active Logical PPE object (in HV dump it points to Linux PPE object naturally because the dump was made on Linux, so Linux LPAR was active at that time)  
*E.g. '''lv1_get_logical_ppe_id''', '''lv1_start_ppe_periodic_tracer''' and '''lv1_set_ppe_periodic_tracer_frequency''' grab the currently active Logical PPE object


====Set AP SSID (0x5)====
== vtable  ==


* Used by VSH.
0x00357DF0 (3.15)
* Command buffer is of size '''0x30'''.
* Sets SSID in AP mode.


offset 0xC - SSID (32 bytes)
== Member variables  ==


====Get Channel (0xf)====
offset 0x90 - pointer to an object that contains VIRQ-Outlet mapping table for thread 0


* Used by VSH.
offset 0x98 - pointer to an object that contains VIRQ-Outlet mapping table for thread 1
* Command buffer is of size '''0x31'''.
* Data is returned from the device.
* Returns list of channels and active channel.


offset 0x2F - active channel (2 bytes)
== Objects  ==


====Set Channel (0x11)====
Here is the list of Logical PPE objects i found in HV 3.15.


* Used by VSH.
{| class="wikitable FCK__ShowTableBorders"
* Command buffer size is '''0xd'''
|-
* Valid channels: '''0 - 13'''. '''0''' means that the channel is selected '''automatically'''.
! Address in HV dump
! LPAR id
! PPE id
|-
| 0x0069C7F0
| 1
| 1
|-
| 0x007A8900
| 2
| 1
|}


offset 0xC - channel (1 byte)
== Virtual IRQ - Outlet Mapping  ==


====Unknown (0x27)====
*HV maintains 2 tables per PPE that map a VIRQ to an Outlet object.
*The table has 256 entries and is indexed by VIRQ.
*Each entry is a pointer to Outlet object.
*Each Logical PPE object has 2 tables, one for each thread of Cell CPU.


* Command buffer size is '''0xF'''.
=== LPAR 1 PPE 1 Thread 0  ===


====Set Antenna (0x29)====
0x0069C990 (3.15) - address of VIRQ-Outlet table for '''LPAR 1 PPE 1 Thread 0''' (not empty)  


* Command buffer size is '''0xe'''
{| class="wikitable FCK__ShowTableBorders"
|-
! VIRQ
! Address of Outlet object in HV dump
! Description
|-
| 58
| 0x00090D10
| -
|-
| 59
| 0x006BAC50
| -
|-
| 60
| 0x006B3ED0
| FLASH storage device / Storage device notification for LPAR 1
|-
| 61
| 0x00697E70
| VUART interrupts
|-
| 62
| 0x001C8F20
| -
|}


offset 0xC - 0,1 or 2 (1 byte)
=== LPAR 1 PPE 1 Thread 1  ===


offset 0xD - 2 (1 byte)
0x0069D9B0 (3.15) - address of VIRQ-Outlet table for '''LPAR 1 PPE 1 Thread 1''' (empty)  


====Set AP WEP Configuration (0x5b)====
=== LPAR 2 PPE 1 Thread 0  ===


* Used by VSH.
0x000A06B0 (3.15) - address of VIRQ-Outlet table for '''LPAR 2 PPE 1 Thread 0''' (not empty)
* Command buffer is of size '''0x56'''.
* Sets WEP security type and WEP key.
* Security types: 0 - none, 1 - wep64, 2 - wep128


offset 0xE - security mode: 0 - none, 1 - wep64, 2 - wep128 (1 byte)
{| class="wikitable FCK__ShowTableBorders"
 
|-
offset 0x10 - WEP key (64 bytes)
! VIRQ
 
! Address of Outlet object in HV dump
====Unknown (0x61)====
! Description
 
|-
* Used by VSH.
| 20
* Command buffer size is '''0xd'''
| 0x003AA210
 
| -
====Unknown (0x65)====
|-
 
| 21
* Used by VSH.
| 0x003AFEC0
* Command  uffer size is '''0xd'''.
| -
* Used in AP mode.
|-
 
| 22
====Get Eurus Firmware Version (0x99)====
| 0x001FC010
 
| -
* Used by VSH.
|-
 
| 23
Here is the response on my PS3 Slim:
| 0x003A8E50
<pre>
| -
00000000: 4a 55 50 49 54 45 52 2d 54 57 4f 2d 46 57 2d 32 |JUPITER-TWO-FW-2|
|-
00000010: 30 2e 30 2e 31 32 2e 70 30 28 4a 61 6e 20 31 39 |0.0.12.p0(Jan 19|
| 24
00000020: 20 32 30 31 30 20 32 31 3a 32 30 3a 35 33 29 00 | 2010 21:20:53).|
| 0x001FFED0
00000030: 00 00 00 00 00 00 00 00 00 00 00 00 00 00      |..............  |
| SPE 0 Class 0 Interrupt
</pre>
|-
 
| 25
====Get AP Operating Mode (0xb7)====
| 0x003AE160
 
| SPE 0 Class 1 Interrupt
* Used by VSH.
|-
* Command buffer size is '''0x10'''
| 26
* Returns AP operating mode (mixed, 11b or 11g).
| 0x003AE350
 
| SPE 0 Class 2 Interrupt
offset 0xC - opmode: 0 - 11b, 1 - 11g, 2 - 11bg (4 bytes)
|-
 
| 27
====Set AP Operating Mode (0xb9)====
| 0x003AB100
 
| SPE 1 Class 0 Interrupt
* Used by VSH.
|-
* Command buffer size is '''0x10'''
| 28
* Sets AP operating mode (mixed, 11b or 11g).
| 0x003AB2F0
 
| SPE 1 Class 1 Interrupt
offset 0xC - opmode: 0 - 11b, 1 - 11g, 2 - 11bg (4 bytes)
|-
 
| 29
====Unknown (0xc5)====
| 0x003AB4E0
 
| SPE 1 Class 2 Interrupt
* Used by VSH.
|-
* Command buffer size is '''0x10'''.
| 30  
* Used in AP mode.
| 0x003AA6A0
 
| SPE 2 Class 0 Interrupt
offset 0xC - ??? (4 bytes)
|-
 
| 31  
====Set AP WPA AKM Suite (0xc9)====
| 0x003AA890
 
| SPE 2 Class 1 Interrupt
* Used by VSH.
|-
* Command buffer size is '''0x11'''.
| 32
* Sets WPA AKM suite in AP mode.
| 0x003AAA80
 
| SPE 2 Class 2 Interrupt
offset 0xC - AKM suite (4 bytes)
|-
 
| 33
====Set AP WPA Group Cipher Suite (0xcf)====
| 0x003B44A0
 
| SPE 3 Class 0 Interrupt
* Used by VSH.
|-
* Command buffer size is '''0x10'''
| 34
* Used in AP + WPA mode.
| 0x003B4690
 
| SPE 3 Class 1 Interrupt
offset 0xC - group cipher suite: group (4 bytes)
|-
 
| 35
====Set AP WPA PSK Binary (0xd3)====
| 0x003B4AD0
 
| SPE 3 Class 2 Interrupt
* Used by VSH.
|-
* Command buffer size is '''0x4c'''
| 36
* Sets WPA PSK binary
| 0x003B5300
 
| SPE 4 Class 0 Interrupt
offset 0xC - PSK (64 bytes)
|-
 
| 37
====Set AP WPA Reauthentication Timeout (0xd5)====
| 0x003B54F0
 
| SPE 4 Class 1 Interrupt
* Used by VSH.
|-
* Command buffer size is '''0x10'''
| 38
* Sets WPA Reauth timeout value in AP WPA mode.
| 0x003B56E0
* VSH uses 36000 as timeout.
| SPE 4 Class 2 Interrupt
 
|-
offset 0xC - timeout value in seconds (2 bytes)
| 39
 
| 0x003AE7C0
====Unknown (0x127)====
| SPE 5 Class 0 Interrupt
 
|-
* Used by VSH.
| 40
* Command buffer size is '''0x10'''.
| 0x003AE9B0
* Used in AP + WPA mode.
| SPE 5 Class 1 Interrupt
 
|-
====Unknown (0x12b)====
| 41
 
| 0x003AEBA0
* Used by VSH.
| SPE 5 Class 2 Interrupt
* Command buffer size is '''0x10'''.
|-
* Used in AP + WPA mode.
| 42
 
| 0x003B2040
====Set AP WPA PSK Passphrase (0x17d)====
| Storage device notification for LPAR 2
|-
| 43
| 0x003AEE30
| VUART interrupts
|-
| 44
| 0x001FEAA0
| -
|-
| 45
| 0x001FEED0
| HDD storage device
|-
| 46
| 0x003B5E20
| -
|-
| 47
| 0x003B7040
| -
|-
| 48
| 0x003B9B40
| -
|-
| 49
| 0x003B3A40
| -
|-
| 50
| 0x003BACA0
| Gelic device
|-
| 51
| 0x003BAE10
| UNKNOWN storage device
|-
| 52
| 0x003B8350
| -
|}


* Used by VSH.
=== LPAR 2 PPE 1 Thread 1  ===
* Command buffer size is '''0x2D'''


offset 0xD - passphrase (32 bytes)
0x007A89E0 (3.15) - address of VIRQ-Outlet table for '''LPAR 2 PPE 1 Thread 1''' (not empty)  


====Set AP WPA Pairwise Cipher Suite (0x1bf)====
{| class="wikitable FCK__ShowTableBorders"
|-
! VIRQ
! Address of Outlet object in HV dump
! Description
|-
| 16
| 0x003B2480
| -
|-
| 17
| 0x003B2590
| -
|-
| 18
| 0x003B26A0
| -
|-
| 19
| 0x003B27B0
| -
|}


* Used by VSH.
== IRQ State Bitmap  ==
* Command buffer size is '''0x11'''
* Used in AP + WPA mode.


offset 0xC - pairwise cipher suite (4 bytes)
*There is one IRQ State Bitmap (256 bits = 32 bytes) per thread of Logical PPE
*'''HSPRG0 value is per thread''', so there are 2 HSPRG0 values in HV dump&nbsp;!!!
*The IRQ State Bitmap of a thread is stored at -0x68E0(HSPRG0)
*When an Event or Interrupt happens then the bitmap at 0x68E0(HSPRG0) is updated
*The physical address of '''LPAR's IRQ State Bitmap''' of thread is stored at offset -0x68C0(HSPRG0)
*The address of LPAR's IRQ State Bitmap is passed to Hypervisor through HV call '''lv1_configure_irq_state_bitmap'''
*'''lv1_detect_pending_interrupts''' returns value of current IRQ State Bitmap.
*The IRQ State Bitmap is updated if an Outlet object is assigned to VIRQ and when Outlet generates an event
*After IRQ State Bitmap update, it's copied to LPAR's IRQ State Bitmap and a hardware interrupt is generated so that LPAR can read it's IRQ State Bitmap and handle interrupts.
*So, IRQ State Bitmap is stored twice, once in HV and once in LPAR, just like VUART IRQ Bitmap.
*'''GameOS''' IRQ state bitmap is stored at address '''SPRG0 + 0x1C0 and of size 64 bytes (256 bits state + 256 bits mask) per thread of Cell CPU'''. So there are 2 IRQ state bitmaps.


offset 0x10 - ??? (1 byte)
0x8941FC0 - physical address of LPAR's IRQ State Bitmap for Thread 0 of LINUX LPAR


====Unknown (0x1d9)====
0x8948FC0 - physical address of LPAR's IRQ State Bitmap for Thread 1 of LINUX LPAR


* Used by VSH.
= System Controller (SC or SYSCON)  =
* Command buffer size is '''0x10'''


====Unknown (0x1dd)====
*Data received from SC is sent to a VUART
*'''lv1_get_rtc''' and '''syscall 0x10036''' communicate with '''SC VUART 4'''.


* Used by VSH.
=== VUART Table  ===
* Command buffer size is '''0xd'''


====Unknown (0x1ed)====
*Address of SC VUART Table - 0x00610410 (3.15).
*There are 5 VUARTs for SC in HV 3.15


* Used by VSH.
Here is the SC VUART table from HV 3.15:
* Command buffer is of size '''0x17'''.
* Rate control ???


====Get Eurus HW Revision (0x1fb)====
{| class="wikitable FCK__ShowTableBorders"
|-
! Index
! Address of VUART object in HV dump
! Description
|-
| 0
| 0x0060FD20
| This VUART is connected with the '''VUART 0 (/dev/sc0)''' of LPAR 1
|-
| 1
| 0x0060FE20
| This VUART is connected with the '''VUART 1 (/dev/sc1)''' of LPAR 1
|-
| 2
| 0x0060FF20
| This VUART is not connected to some peer VUART but i guess that it should be connected to '''VUART 2 (/dev/sc2)''' of LPAR1
|-
| 3
| 0x006124E0
| This VUART is connected with the '''VUART 3 (/dev/sc3)''' of LPAR 1
|-
| 4
| 0x00612DF0
| '''lv1_get_rtc''' and '''syscall 0x10036''' communicate with this VUART.
|}


* Command buffer size is '''0x10'''.
== Interrupt Handling  ==


====Associate (0x1001)====
spider_sc_interrupt_handler - 0x0020A68C (3.15)  


* Used by VSH.
== Methods  ==
* Used by LV1 on FAT models.
* Command buffer size is '''0xd'''
* Data passed to Gelic device is all 0s


====Get Common Configuration (0x1003)====
sc_vuart_4_get_peer_vuart - 0x002ED384 (3.15)  


* Used by VSH.
sc_send - 0x0020A908 (3.15)
* Used by LV1 on FAT models.
* Command buffer size is '''0x18'''
* Data passed to Gelic device is all 0s


====Set Common Configuration (0x1005)====
sc_receive - 0x0020A354 (3.15)


* Used by VSH.
sc_vuart_rx_trigger_callback - 0x002ED470 (3.15)
* Used by LV1 on FAT models.
* Command buffer size is '''0x18'''
* Hmm, VSH always removes QOS bit from capability, that means Jupiter doesn't support QOS ???


offset 0xC - BSS type: 0 - infrastructure, 1 - ???, 2 - adhoc (1 byte)
== lv1_get_rtc  ==


offset 0xD - authentication mode: 0 - open, 1 - shared key
*'''lv1_get_rtc''' communicates with SC VUART 4.
*20 bytes are written to the peer VUART of SC VUART 4.
*After a request is sent to SC VUART 4, '''lv1_get_rtc''' busy waits until SC VUART 4 receive data buffer is not empty.
*When SC VUART 4 receive data buffer is not empty, '''lv1_get_rtc''' reads 24 bytes from the VUART.


offset 0xE - opmode: 0 - 11bg, 1 - 11b, 2 - 11g (1 byte)
== SYSCON Protocol ==


offset 0xF - ??? (1 byte)
* I was able to enable SYSCON Manager debug messages in HV Process 5
* Messages sent to SYSCON are at least '''0x10''' bytes of size. SC VUARTs check it before sending the messages to SYSCON.
* The header size of the SYSCON messages is '''0x10''' bytes.


offset 0x10 - BSSID (6 bytes)
=== Packet Header ===


offset 0x16 - capability (2 bytes)
* Packet header is of size '''0x10''' bytes.
* At offset '''0x6''' of SYSCON packet is the header checksum which is of size '''2''' bytes.
* '''The header checkum is just a sum of first 6 header bytes and 0x8000 constant'''
* The '''2nd byte''' in every SYSCON message has to be '''1''' or else the function '''sc_send''' fails.
* The '''word''' at offset '''0x8''' is the '''SC VUART index'''.
* The '''half-words''' at offset '''0xC''' and '''0xE''' have to be equal or the function '''sc_send''' fails.


====Get WEP Configuration (0x1013)====
<pre>
struct sc_hdr
{
    uint8_t field0;
    uint8_t field1;          /* always 1 */
    uint8_t field2[4];
    uint16_t cksum;          /* header checksum */
    uint32_t index;          /* syscon index (0 - /dev/sc0, 1 - /dev/sc1, 2 - /dev/sc2, 3 - /dev/sc3) */
    uint16_t size1;          /* body size */
    uint16_t size2;          /* body size */
};
</pre>


* Used by VSH.
==== Calculating Packet Header Checksum ====
* Used by LV1 on FAT models.
* Command buffer size is '''0x50'''
* Data passed to Gelic device is all 0s


====Set WEP Configuration (0x1015)====
<pre>
/* calculating SC packet header checksum */


* Used by VSH.
/*
* Used by LV1 on FAT models.
* sc_hdr_cksum
* Command buffer size is '''0x50'''
*/
uint16_t sc_hdr_cksum(struct sc_hdr *sc_hdr)
{
    uint8_t *ptr;
    uint32_t sum;
 
    ptr = (uint8_t *) sc_hdr;
    sum = 0;


====Get WPA Configuration (0x1017)====
    for (i = 0; i < 6; i++)
        sum += *ptr++;


* Used by VSH.
    sum += 0x8000;
* Used by LV1 on FAT models.
* Command buffer size is '''0x5b'''
* Data passed to Gelic device is all 0s


====Set WPA Configuration (0x1019)====
    return sum & 0xffff;
}


* Used by VSH.
struct sc_hdr sc_hdr;
* Used by LV1 on FAT models.
* Command buffer size is '''0x5b'''


offset 0xE - security type: 0 - WPA, 1 - RSNA (1 byte)
memset(&sc_hdr, 0, sizeof(sc_hdr));


offset 0xF - psk type: 0 - hex, 1 - bin (1 byte)
sc_hdr.cksum = sc_hdr_cksum(sc_hdr);


offset 0x10 - psk key: hex or bin (64 bytes)
/* fill sc header here */


offset 0x50 - group cipher suite: 0x0050f202 - WPA TKIP, 0x0050f204 - WPA AES, 0x000fac02 - RSNA TKIP, 0x000fac04 - RSNA CCMP (4 bytes)
sc_hdr.cksum = sc_hdr_cksum(sc_hdr);
</pre>


offset 0x54 - pairwise cipher suite: 0x0050f202 - WPA TKIP, 0x0050f204 - WPA AES, 0x000fac02 - RSNA TKIP, 0x000fac04 - RSNA CCMP (4 bytes)
=== Packet Body ===


offset 0x58 - AKM suite: 0x0050f202 - WPA PSK, 0x000fac02 - RSNA PSK (4 bytes)
* Packet body follows packet header
* Packet body size is stored at offset '''0xC''' and '''0xE''' in packet header and is of size 2 bytes


'''See IEEE 802.11 specification for more details about cipher/AKM suites
=== Reading SYSCON EPROM (NVS Service) ===
'''


802.11 spec: [http://standards.ieee.org/getieee802/download/802.11-2007.pdf]
Here is a command which is sent to SYSCON to read 1 byte of EPROM at offset 0x48C07 (Product Mode):
0x14 <span style="background:#00FF00">0x01</span> 0x00 0x00 0x00 0x00 <span style="background:#FF0000">0x80 0x15</span> <span style="background:#FFFF00">0x00 0x00 0x00 0x00</span> <span style="background:#00FFFF">0x00 0x04</span> <span style="background:#00FFFF">0x00 0x04</span> 0x20 0x02 0x07 0x01


====Unknown (0x1025)====
And here is the response to the above request:
0x14 <span style="background:#00FF00">0x01</span> 0x00 0x00 0x00 0x00 <span style="background:#FF0000">0x80 0x15</span> <span style="background:#FFFF00">0x00 0x00 0x00 0x03</span> <span style="background:#00FFFF">0x00 0x05</span> <span style="background:#00FFFF">0x00 0x05</span> 0x00 0x02 0x07 0x01 0xff


* Used by VSH.
=== PCI Bus Power ===
* Command buffer size is '''0x10'''.
* Sets preamble type, something else ???


offset 0xC - preamble mode: 0 - short, 1 - long (1 byte)
* '''Used by PS2EMU System Manager in HV process 9 when PS2 EMU is booted'''


====Unknown (0x1031)====
==== PCI Bus Power On ====


* Used by VSH.
'''Request to SC1:'''
* Command buffer size is '''0xe'''
0x10 0x01 0x00 0x00 0x00 0x00 0x80 0x11 0x00 0x00 0x00 0x00 0x00 0x02 0x00 0x02 0x31 0x01


====Get Scan Results (0x1033)====
==== PCI Bus Power Off ====


* Used by VSH.
'''Request to SC1:'''
* Used by LV1 on FAT models.
0x10 0x01 0x00 0x00 0x00 0x00 0x80 0x11 0x00 0x00 0x00 0x00 0x00 0x02 0x00 0x02 0x31 0x00
* Command buffer size is '''0x5b0'''
* Data passed to Gelic device is all 0s


=====Scan Results=====
=== Ring Buzzer ===


offset 0x0 - number of scan entries (1 byte)
'''Request:'''
0x16 0x01 0x00 0x00 0x00 0x00 0x80 0x17 0x00 0x00 0x00 0x00 0x00 0x08 0x00 0x08 0x20 0x00 0x00 0x00 0x00 0x00 0x00 0x00


offset 0x1 - array of scan entries
=SYSCON=
Crossreference: [http://wiki.gitbrew.org/index.php/PS3:HvReverseEngineering#SYSCON gitbrew.org::SYSCON] <br />


======Scan Entry======
SYSCON MMIO registers can be accessed on Linux with a driver using lv1_undocumented_function_114, e.g. '''ps3sbmmio'''.
Use ps3sbmmio device driver carefully, an access at some addresses could shutdown your PS3.


offset 0x0 - size of this entry in bytes, this field is NOT included (2 bytes)
==Packet Header==


offset 0x2 - BSSID (6 bytes)
* Size is '''0x10'''.


offset 0x8 - RSSI (1 byte)
<pre>
struct sc_hdr {
    uint8_t service_id;
    uint8_t version;              /* must be 1 !!! */
    uint16_t transaction_id;      /* returned in response */
    uint8_t res[2];
    uint16_t cksum;              /* checksum of first 6 header bytes */
    uint32_t index;              /* SYSCON index: 0-4 */
    uint16_t payload_size[2];    /* body size */
};
</pre>


offset 0x9 - timestamp (8 bytes)
==Sending Packets==


offset 0x11 - beacon period (2 bytes)
* Before sending new packet to SYSCON, the Hypervisor checks 2 words at offsets 0x2400008DFF0 and 0x2400008CFF4.
* The Hypervisor busy waits until (value + 1) at offset 0x2400008CFF4 is NOT equal to value at offset 0x2400008DFF0.
* The packet is sent with 4 byte transfers.
* First, the Hypervisor sends the header of the packet, 4 word transfers.
* The header is written beginning at the address 0x2400008D000.
* After that the Hypervisor sends the body of the packet, with 4 byte transfers too.
* The body is written beginning at the address 0x2400008D010.
* If the packet size is NOT divisible by 4 then the Hypervisor sends the remaining bytes (at most 3) as a word padded with 0s.
* After the packet body was written, the Hypervisor calculates checksum of the whole packet and writes it at the address where the last word of packet body was written + 4.
<pre>
uint32_t cksum = 0;


offset 0x13 - capability (2 bytes)
for (i = 0; i < packet_size; i++)
    cksum -= packet[i];


offset 0x15 - information elements (see 802.11 specification)
cksum = cksum & 0xffff;
</pre>
* After the packet checksum was written, the Hypervisor reads the value at offset 0x2400008DFF0, modifies it and stores back:
<pre>
value = value + 1;
value &= 0xffff;
value = (value << 16) | value;
</pre>
* To notify the SYSCON about the new packet, the Hypervisor writes 0x1 to address 0x2400008E100.


====Start Scan (0x1035)====
==Receiving Packets==


* Used by VSH.
* The Hypervisor installs an interrupt handler for the SYSCON.
* Used by LV1 on FAT models.
* First, the Hypervisor reads a word from address 0x2400008E000, ors it with 0xFFFFFFFD and writes the value back.
* Command buffer size depends on size of channel list and ESSID string length
* Then, the Hypervisor reads a word from address 0x2400008E004 and tests if bit 0x2 is set or not. The bit 0x2 should be not 0 or else the Hypervisor panics.
* Data passed to Gelic device contains channel list and ESSID string
* After that, the Hypervisor reads a word at address 0x2400008CFF0 and 0x2400008DFF4. If there is a new packet pending from SYSCON, then the (value + 1) at 0x2400008CFF0 should be equal the value at 0x2400008DFF4.
* First '''0x16''' bytes in command data buffer are all 0s, then follows the channel list and after that ESSID
* The Hypervisor reads the header of the packet beginning at the address 0x2400008C000.
* The header is read with 4 word transfers by the Hypervisor.
* The byte at offset 1 in the packet header must be 1 or else the Hypervisor discards the packet as invalid.
* The Hypervisor calculates the checksum of the packet header and checks it with the checksum stored in the header. If they don't match then the Hypervisor discards the packet.
* The Hypervisor reads the body of the packet beginning at the address 0x2400008C010.
* The header and the body of the received packet can be read as many times as you want !!! They remain until next SYSCON packet is received
which gives us the possibility to communicate with SYSCON on Linux easily :)


====Diassociate (0x1037)====
==Test==


* Used by VSH.
'''1. Before sending SYSCON packet''':
* Used by LV1 on FAT models.
<pre>
* Command buffer size is '''0xd'''
root@debian-hdd:~# dd if=/dev/ps3sbmmio bs=1 count=4 skip=$((0x8cff4)) status=noxfer | hexdump -C
* Data passed to Gelic device is all 0s


====Get RSSI (0x103d)====
00000000  01 18 01 18                                      |....|
00000004


* Used by VSH.
root@debian-hdd:~# dd if=/dev/ps3sbmmio bs=1 count=4 skip=$((0x8dff0)) status=noxfer | hexdump -C
* Used by LV1 on FAT models.
* Command buffer size is '''0x17'''


offset 0x10 - MAC address of node (6 bytes)
00000000  01 18 01 18                                      |....|
00000004


offset 0x16 - RSSI (1 byte)
root@debian-hdd:~# dd if=/dev/ps3sbmmio bs=1 count=4 skip=$((0x8cff0)) status=noxfer | hexdump -C


====Get MAC Address (0x103f)====
00000000  01 24 01 24                                      |.$.$|
00000004


* Command buffer size is '''0x13'''
root@debian-hdd:~# dd if=/dev/ps3sbmmio bs=1 count=4 skip=$((0x8dff4)) status=noxfer | hexdump -C


offset 0xD - MAC address (6 bytes)
00000000  01 24 01 24                                      |.$.$|
00000004
</pre>


====Set MAC Address (0x1041)====
'''2. SYSCON packet was sent by using ps3dm_scm read_eprom.'''


* Used by VSH.
'''3. After sending SYSCON packet''':
* Used by LV1 too.
<pre>
* Command buffer size is '''0x12'''
root@debian-hdd:~# dd if=/dev/ps3sbmmio bs=1 count=4 skip=$((0x8cff4)) status=noxfer | hexdump -C


====Unknown (0x104d)====
00000000  01 19 01 19                                      |....|
00000004


* Used by VSH.
root@debian-hdd:~# dd if=/dev/ps3sbmmio bs=1 count=4 skip=$((0x8dff0)) status=noxfer | hexdump -C
* Command buffer size is '''0xd'''.


offset 0xC - 0 - ???, 1 - ??? (1 byte)
00000000  01 19 01 19                                      |....|
00000004


====Unknown (0x104f)====
root@debian-hdd:~# dd if=/dev/ps3sbmmio bs=1 count=4 skip=$((0x8cff0)) status=noxfer | hexdump -C


* Command buffer size is '''0xd'''.
00000000  01 25 01 25                                      |.%.%|
* Returns 1 byte.
00000004


offset 0xC - 0 - ???, 1 - ??? (1 byte)
root@debian-hdd:~# dd if=/dev/ps3sbmmio bs=1 count=4 skip=$((0x8dff4)) status=noxfer | hexdump -C


====Unknown (0x1051)====
00000000  01 25 01 25                                      |.%.%|
00000004
</pre>


* Used by VSH.
'''4. Received Header'''
* Command buffer size is '''0x5b3'''.
* Returns '''0x5a7''' bytes.


offset 0xC - number of entries
<pre>
root@debian-hdd:~# dd if=/dev/ps3sbmmio bs=1 count=16 skip=$((0x8c000)) status=noxfer | hexdump -C


offset 0x10 - entries (each entry is 0xd bytes)
00000000  14 01 00 00 00 00 80 15  00 00 00 03 00 05 00 05  |................|
00000010


====Unknown (0x1053)====
</pre>


* Used by VSH.
'''5. Received Body'''
* Command buffer size is '''0x70'''.


offset 0xC - ??? (4 bytes)
<pre>
root@debian-hdd:~# dd if=/dev/ps3sbmmio bs=1 count=8 skip=$((0x8c010)) status=noxfer | hexdump -C


offset 0x10 - MAC address (6 bytes)
00000000  00 00 c7 01 ff 00 00 00                          |..Ç.ÿ...|
00000008
</pre>


====Unknown (0x1059)====
==Examples==


* Used by VSH.
===Get RTC===
* Command buffer size is '''0x2a8'''.


====Unknown (0x105f)====
* Used by LV1 call '''lv1_get_rtc'''
* Communication with SYSCON 4


* Used by LV2.
Request:
<pre>
# write packet


====Get Zephyr HW Revision (0x1101)====
# echo "0: 13 01 0000 0000 8014 00000004 0001 0001 33 00 00 00 0000ff1f" | xxd -c256 -r | \
      dd of=/dev/ps3sbmmio bs=1 seek=$((0x8d000)) status=noxfer


* Used by VSH.
# dump packet counter
* Not a Gelic device command, handled by LV2 kernel.
* LV2 uses LV1 call '''lv1_net_control(0x8000000000000002)'''
* Command buffer size is '''0x18'''.


====Get MAC Address List (0x1117)====
# dd if=/dev/ps3sbmmio bs=1 count=4 skip=$((0x8dff0)) status=noxfer | hexdump -C


* Command buffer size is '''0xce'''.
00000000  00 c0 00 c0                                      |.À.À|
* Returns several MAC addresses.
00000004


offset 0xC - number of MAC addresses (2 bytes)
# increment packet counter


offset 0xE - MAC addresses (6 * number of MAC addresses)
echo "0: 00c1 00c1" | xxd -c256 -r | dd of=/dev/ps3sbmmio bs=1 seek=$((0x8dff0)) status=noxfer


====Unknown (0x1133)====
# kick packet


* Used by VSH.
# echo "0: 00000001" | xxd -c256 -r | dd of=/dev/ps3sbmmio bs=1 seek=$((0x8e100)) status=noxfer
* Command buffer size is '''0x1A'''.


====Set WOL MAC Address Filter (0x1139)====
</pre>


* Used by LV2 internally.
Response:
* Command buffer is of size '''0x28'''.


====Unknown (0x113b)====
<pre>
# dump packet counter


* Used by LV2 internally.
# dd if=/dev/ps3sbmmio bs=1 count=4 skip=$((0x8dff0)) status=noxfer | hexdump -C
* Command buffer size is '''0x20'''.


====Set WOL Multicast Address Filter (0x113d)====
00000000  00 c1 00 c1                                      |.Á.Á|
00000004


* Used by LV2 internally.
# dump response packet
* Command buffer is of size '''0x2c'''.


====Clear WOL Multicast Address Filter (0x113f)====
# dd if=/dev/ps3sbmmio bs=1 count=24 skip=$((0x8c000)) status=noxfer | hexdump -C


* Used by LV2 internally.
00000000  13 01 00 00 00 00 80 14  00 00 00 04 00 08 00 08  |................|
* Command buffer is of size '''0x28'''.
00000010  00 00 00 00 15 af 47 6b                          |.....¯Gk|
00000018
</pre>


====Unknown (0x1141)====
===Ring Buzzer===


* Used by LV2 internally.
* Used by System Manager
* Command buffer is of size 0x12.
* Communication with SYSCON 1


====Clear WOL Address Filter (0x1143)====
Request:


* Used by LV2 internally.
<pre>
* Command buffer size is '''0x2c'''.
# write packet


====Unknown (0x114b)====
# echo "0: 16 01 1620 0000 804d 00000001 0008 0008 20 29 0a 00 000001b6 0000fdcb" | xxd -c256 -r | \
      dd of=/dev/ps3sbmmio bs=1 seek=$((0x8d000)) status=noxfer


* Used by LV2 internally.
# dump packet counter


====Set WOL Magic Packet Mode (0x1155)====
# dd if=/dev/ps3sbmmio bs=1 count=4 skip=$((0x8dff0)) status=noxfer | hexdump -C


* Used by LV2 internally.
00000000  00 c0 00 c0                                      |.À.À|
* Command buffer is of size '''0x10'''.
00000004
* Enables/Disables WOL magic packet.


offset 0xC - mode: 0 - disable, 1 - enable (4 bytes)
# increment packet counter


====Unknown (0x1157)====
echo "0: 00c1 00c1" | xxd -c256 -r | dd of=/dev/ps3sbmmio bs=1 seek=$((0x8dff0)) status=noxfer


* Used by LV2 internally.
# kick packet
* Command buffer size is '''0x10'''.


====Set WOL Multicast Address Filter Mode (0x1159)====
# echo "0: 00000001" | xxd -c256 -r | dd of=/dev/ps3sbmmio bs=1 seek=$((0x8e100)) status=noxfer


* Used by LV2 internally.
# you should hear a beep
* Command buffer size is '''0x10'''.
* WOL function


offset 0xC - mode: 0 - disable, 1 - enable (4 bytes)
</pre>


====Set Unicast Address Filter (0x115b)====
Response:


* Used by LV2 internally.
<pre>
* Command buffer is of size '''0x6a'''.
# dump packet counter
* This command should be used to set proper MAC address or else device won't be able to receive packets destined to its own MAC address


offset 0xC - ??? (2 bytes)
# dd if=/dev/ps3sbmmio bs=1 count=4 skip=$((0x8dff0)) status=noxfer | hexdump -C


offset 0xE - ??? (2 bytes)
00000000  00 c1 00 c1                                      |.Á.Á|
00000004


offset 0x10 - MAC address (6 bytes)
# dump response packet


====Clear Unicast Address Filter (0x115d)====
# dd if=/dev/ps3sbmmio bs=1 count=24 skip=$((0x8c000)) status=noxfer | hexdump -C
00000000  16 01 16 20 00 00 80 4d  00 00 00 01 00 01 00 01  |... ...M........|
00000010  00 00 00 00 00 00 fe e3                          |......þã|
00000018


* Used by LV2 internally.
</pre>
* Command buffer size is '''0x6a'''.


====Get Unicast Address Filter (0x115f)====
=Isolation=
Crossreference: [http://wiki.gitbrew.org/wikibrew/PS3:HvReverseEngineering#Isolation gitbrew.org::Isolation] <br />


* Used by LV2 internally.
==Running Isolated SPE Modules On OtherOS++ Linux==
* Command buffer is of size '''0x6a'''.


====Set Multicast Address Filter (0x1161)====
* spp_verifier is a kernel module which shows you how to run isolated SPE modules on OtherOS++ Linux.
* It decrypts default.spp profile
* Tested on 3.41 and 3.55.
* You can modify it easily to run other SPE modules.


* Used by LV2 internally.
<pre>
* Command buffer size is '''0x2c'''.
root@debian-hdd:/home/glevand/spp_verifier# cat spp_verifier_355.self > /proc/spp_verifier/spu
root@debian-hdd:/home/glevand/spp_verifier# cat default_355.spp > /proc/spp_verifier/profile
root@debian-hdd:/home/glevand/spp_verifier# echo 1 > /proc/spp_verifier/run
root@debian-hdd:/home/glevand/spp_verifier# cat /proc/spp_verifier/debug


====Clear Multicast Address Filter (0x1163)====
PPE id (0x0000000000000001) VAS id (0x0000000000000002)
 
lv1_construct_logical_spe (0x00000000)
* Used by LV2 internally.
SPE id (0x000000000000002b)
* Command buffer size is '''0x2c'''
lv1_undocumented_function_209 (0x00000000)
* To clear all multicast addresses send command with all 0s.
shadow execution status (0x0000000000000002)
 
lv1_get_spe_interrupt_status(1) (0x00000000)
offset 0xC - multicast address filter (4 * 8 bytes)
interrupt status 1 (0x0000000000000000)
 
sleep
====Get Multicast Address Filter (0x1165)====
shadow execution status (0x0000000000000002)
 
lv1_get_spe_interrupt_status(1) (0x00000000)
* Used by LV2 internally.
interrupt status 1 (0x0000000000000001)
* Command buffer is of size '''0x2c'''.
ea (0xc000000002920000) esid (0xc000000008000000) vsid (0x0000408f92c94500)
 
lv1_undocumented_function_62 (0x00000000)
====Set WOL Address Filter (0x1167)====
lv1_clear_spe_interrupt_status(1) (0x00000000)
lv1_undocumented_function_168 (0x00000000)
sleep
shadow execution status (0x0000000000000007)
lv1_get_spe_interrupt_status(1) (0x00000000)
interrupt status 1 (0x0000000000000000)
lv1_get_spe_interrupt_status(2) (0x00000000)
interrupt status 2 (0x0000000000000000)
out interrupt mbox (0x0000000000000002)
out interrupt mbox (0x0000000000000002)
lv1_undocumented_function_167 (0x00000000)
lv1_clear_spe_interrupt_status (0x00000000)
lv1_undocumented_function_200 (0x00000000)
sleep
shadow execution status (0x000000000000000b)
lv1_get_spe_interrupt_status(1) (0x00000000)
interrupt status 1 (0x0000000000000000)
shadow execution status (0x000000000000000b)
problem status (0x01000082)
lv1_destruct_logical_spe (0x00000000)


* Used by LV2 internally.
root@debian-hdd:/home/glevand/spp_verifier# hexdump -C /proc/spp_verifier/profile | less
* Command buffer size is '''0x70'''.
...
...
00000200  00 02 00 05 00 00 20 a0  00 00 00 01 00 03 00 00  |......  ........|
00000210  00 00 00 00 00 00 00 01  00 00 00 0e 00 00 00 00  |................|
00000220  00 00 02 88 00 00 00 01  10 70 00 00 01 00 00 01  |.........p......|
00000230  00 00 00 00 00 00 00 00  53 43 45 5f 43 45 4c 4c  |........SCE_CELL|
00000240  4f 53 5f 50 4d 45 00 00  00 00 00 00 00 00 00 00  |OS_PME..........|
00000250  00 00 00 00 00 00 00 00  00 00 00 06 00 00 02 50  |...............P|
00000260  10 70 00 00 01 00 00 01  2f 66 6c 68 2f 6f 73 2f  |.p....../flh/os/|
00000270  74 68 69 73 5f 69 73 5f  64 75 6d 6d 79 00 00 00  |this_is_dummy...|
00000280  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  |................|
...
...
</pre>


====Set WOL Address Filter Mode (0x116d)====
==Using metldr On OtherOS++ Linux==


* Used by LV2 internally.
* spp_verifier_direct is a kernel module which shows you how to run isolated SPE modules on OtherOS++ Linux by using metldr directly.
* Command buffer size is '''0x10'''.
* It decrypts default.spp profile.
* Enables/Disables WOL address matching
* Tested on 3.41 and 3.55.
* You can modify it easily to run other SPE modules.


offset 0xC - mode: 0 - disable, 1 - enable (4 bytes)
<pre>
 
root@debian-hdd:/home/glevand/spp_verifier_direct# insmod ./spp_verifier_direct.ko
====Set Unicast Address Filter Mode (0x116f)====
root@debian-hdd:/home/glevand/spp_verifier_direct# cat metldr > /proc/spp_verifier_direct/metldr
 
root@debian-hdd:/home/glevand/spp_verifier_direct# cat isoldr_355 > /proc/spp_verifier_direct/isoldr
* Used by LV2 internally.
root@debian-hdd:/home/glevand/spp_verifier_direct# cat RL_FOR_PROGRAM_355.img > /proc/spp_verifier_direct/rvkprg
* Command buffer size is '''0x10'''.
root@debian-hdd:/home/glevand/spp_verifier_direct# cat EID0 > /proc/spp_verifier_direct/eid0
 
root@debian-hdd:/home/glevand/spp_verifier_direct# cat spp_verifier_355.self > /proc/spp_verifier_direct/spu
offset 0xC - mode: 0 - disable, 1 - enable (4 bytes)
root@debian-hdd:/home/glevand/spp_verifier_direct# cat default_355.spp > /proc/spp_verifier_direct/profile
 
root@debian-hdd:/home/glevand/spp_verifier_direct# echo 1 > /proc/spp_verifier_direct/run
====Get Device Status (0xfffb)====
root@debian-hdd:/home/glevand/spp_verifier_direct# cat /proc/spp_verifier_direct/debug
PPE id (0x0000000000000001) VAS id (0x0000000000000002)
lv1_construct_logical_spe (0x00000000)
SPE id (0x0000000000000033)
lv1_enable_logical_spe (0x00000000)
lv1_set_spe_interrupt_mask(0) (0x00000000)
lv1_set_spe_interrupt_mask(1) (0x00000000)
lv1_set_spe_interrupt_mask(2) (0x00000000)
lv1_set_spe_privilege_state_area_1_register (0x00000000)
ea (0xc000000002680000) esid (0xc000000008000000) vsid (0x0000408f92c94500)
lv1_get_spe_interrupt_status(0) (0x00000000)
lv1_get_spe_interrupt_status(1) (0x00000000)
lv1_get_spe_interrupt_status(2) (0x00000000)
sleep
lv1_get_spe_interrupt_status(0) (0x00000000)
lv1_get_spe_interrupt_status(1) (0x00000000)
lv1_get_spe_interrupt_status(2) (0x00000000)
out interrupt mbox (0x0000000000000001)
lv1_clear_spe_interrupt_status(2) (0x00000000)
transferring EID0, ldr args and revoke list to LS
waiting until MFC transfers are finished
MFC transfers done
out mbox (0x00000001)
sleep
lv1_get_spe_interrupt_status(0) (0x00000000)
lv1_get_spe_interrupt_status(1) (0x00000000)
lv1_get_spe_interrupt_status(2) (0x00000000)
out interrupt mbox (0x0000000000000002)
lv1_clear_spe_interrupt_status(2) (0x00000000)
out mbox (0x00000002)
lv1_clear_spe_interrupt_status(2) (0x00000000)
sleep
lv1_get_spe_interrupt_status(0) (0x00000000)
lv1_get_spe_interrupt_status(1) (0x00000000)
lv1_get_spe_interrupt_status(2) (0x00000000)
problem status (0x01000082)
lv1_destruct_logical_spe (0x00000000)


* Used by VSH.
root@debian-hdd:/home/glevand/spp_verifier_direct# hexdump -C /proc/spp_verifier_direct/profile | less
* Not a Gelic device command, handled by LV2 kernel.
...
* Returned data size in command buffer is '''0x10'''.
...
00000200  00 02 00 05 00 00 20 a0  00 00 00 01 00 03 00 00  |......  ........|
00000210  00 00 00 00 00 00 00 01  00 00 00 0e 00 00 00 00  |................|
00000220  00 00 02 88 00 00 00 01  10 70 00 00 01 00 00 01  |.........p......|
00000230  00 00 00 00 00 00 00 00  53 43 45 5f 43 45 4c 4c  |........SCE_CELL|
00000240  4f 53 5f 50 4d 45 00 00  00 00 00 00 00 00 00 00  |OS_PME..........|
00000250  00 00 00 00 00 00 00 00  00 00 00 06 00 00 02 50  |...............P|
00000260  10 70 00 00 01 00 00 01  2f 66 6c 68 2f 6f 73 2f  |.p....../flh/os/|
00000270  74 68 69 73 5f 69 73 5f  64 75 6d 6d 79 00 00 00  |this_is_dummy...|
00000280  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  |................|
...
...
</pre>


====Unknown (0xfffc)====
= Gelic Device =
Crossreference: [http://wiki.gitbrew.org/index.php/PS3:HvReverseEngineering#Gelic_Device gitbrew.org::Gelic Device] <br />


* Used by VSH.
==sys.hw.config==
* Not a Gelic device command, handled by LV2 kernel.
* LV2 uses LV1 call '''lv1_net_control(0x1 /* bus id */, 0x0 /* dev id */, 0x6 /* get channel info command */, 0x4, 0x0, 0x0)'''


====Get Channel Information (0xfffd)====
* Value of the loader parameter "sys.hw.config" controls if Gelic WLAN is enabled or not.
 
* Value of the loader parameter "sys.hw.config" is stored in the repository node "sys.hw.config" too.
* Used by VSH.
* If bit '''0x40000''' is set then LV1 allows using Gelic WLAN interface from LV2.
* Not a Gelic device command, handled by LV2 kernel.
* Value on my PS3 slim '''0x4e00ffff0a03bc3c''' with Gelic WLAN interface disabled. As you can see, the Gelic WLAN interface is disabled and LV1 doesn't allow using of LV1 calls 196 and 195. It returns LV1_CONDITION_NOT_SATISFIED.
* LV2 uses LV1 call '''lv1_net_control(0x1 /* bus id */, 0x0 /* dev id */, 0x6 /* get channel info command */, 0x0, 0x0, 0x0)'''
* GameOS checks bit '''0x40000''' of the repository node "sys.hw.config" during network initialization and if it's set then LV2 initializes Gelic WLAN interface.
* Returns supported WLAN channels
* Check your "sys.hw.config" repository node and if bit '''0x40000''' is set then you are a lucky owner of a PS3 model with the old WLAN interface.
* '''On newer PS3 models, GameOS uses USB interface to communicate with WLAN.'''
* On PS3 models, where bit '''0x40000''' is NOT set in "sys.hw.config" repository node, the new USB interface is used.
 
''Note:[http://www.ps3devwiki.com/index.php?title=Wifi old vs. new]: Old == CECHA up to CECHK, New == CECHL and later''
 
== Control Interface ==
 
HV calls 195 and 196 are used by GameOS to send commands to Gelic device directly.


====Set Response Timeout (0xfffe)====
=== lv1_undocumented_function_196 ===


* Used by VSH.
==== Parameters ====
* Not a Gelic device command, handled by LV2 kernel.
* Sets timeout value which is used to wait for a response from Gelic device.
* Typical value used by VSH is '''0x989680'''.
* Command buffer size is '''0x14'''.


====Unknown (0xffff)====
r3 - LPAR address of data buffer


* Used by VSH.
r4 - size of data buffer
* Not a Gelic device command, handled by LV2 kernel.
* Returns 0x10 bytes in command buffer.
* Returns gelic device state ???


=== Events ===
r5 - must be 0


<pre>
=== lv1_undocumented_function_195 ===
struct ps3_eurus_event_hdr {
__le32 type;
__le32 id;
__le32 timestamp;
__le32 payload_length;
__le32 unknown;
} __packed;


struct ps3_eurus_event {
==== Parameters ====
struct ps3_eurus_event_hdr hdr;
u8 payload[44];
} __packed;
</pre>


====Event Type 0x00000040====
r3 - command (16 bit value)


{| class="wikitable"
r4 - command data size
|-
! Id !! Description
|-
| 0x00000001 || Deauthenticated
|}


====Event Type 0x00000080====
r5 - must be 0


{| class="wikitable"
=== Data Buffer ===
|-
! Id !! Description
|-
| 0x00000001 || Beacon Lost
|-
| 0x00000002 || Connected
|-
| 0x00000004 || Scan Completed
|-
| 0x00000020 || WPA Connected
|-
| 0x00000040 || WPA Error (MIC Error)
|}


====Event Type 0x80000000====
* Data Buffer passed to HV call 196 is divided into 2 parts.
* The first 0x800 bytes are for sending and receiving command data
* The remaining 0x800 bytes are for event notification.


{| class="wikitable"
=== Command Data Buffer ===
|-
! Id !! Description
|-
| 0x00000001 || Device Ready
|}


== Enabling WLAN Gelic On FAT ==
* Every command data sent to Gelic device contains header of size '''0xC'''
* After the header follows the command data
* After the Gelic device processed the command, it notifies LV2 kernel about command completion by sending an interrupt


Linux kernel doesn't use Gelic Device Control Interface like GameOS does it.
==== Header ====
To get WLAN working on Linux booted with GameOS rights, we have to disable
Gelic Device Control Interface first because it's enabled for GameOS by default.


The value of repository node "ios.net.eurus.lpar" controls access to Gelic Device Control Interface.
* Size is '''0xc'''.
It's a bitmap. The position of a bit corresponds to LPAR id. During GameOS booting, HV process 9 (System Manager) sets bit at postion 2 to 1 which means enable Gelic Device Control Interface for LPAR 2.
* Byte order is little-endian.
* Header data in a request command buffer is always all 0s.


To disable Gelic Device Control Interface on Linux, first unload Gelic device driver, then set
0x0 - command = request command + 1 (2 bytes)
value of repository node "ios.net.eurus.lpar" to 0 and load Gelic device driver again. After that WLAN should work again but only on FATs.


For PS3 Slim we need a new Linux Gelic device driver which uses Gelic Device Control Interface directly.
0x4 - result, 0x1 - success ??? 0x2 - buffer too small ??? (2 bytes)


0x6 - body size (2 bytes)


==USB WLAN Interface (Codename Jupiter 2)==
=== Event Data Buffer ===


* On new PS3 models, WLAN interface is USB.
* The Gelic device notifies LV2 kernel by sending an interrupt when new events are available
* '''Good news is that  the same commands are used as with LV1 calls 196 and 195'''.
* Event Data Buffer has 8 bytes header
* There are 2 wireless devices: Station and AP.
* The remaining bytes are divided into event slots
* I got WLAN scan working.
* Each event slot is of size 64 bytes
* Events are in little-endian format


===Endpoints===
==== Header ====


* LV2 uses 3 USB endpoints of interface 3,4 and 5 to communicate with WLAN.
offset 0x0 - GET index (4 bytes)
* Endpoints EP5 IN/OUT, EP6 IN/OUT and EP7 IN/OUT.
* '''WLAN commands''' are sent to endpoint '''EP5 OUT''' with '''interrupt transfers'''.
* '''WLAN events''' and '''WLAN command responses''' are received on endpoint '''EP5 IN''' with '''interrupt transfers'''.
* LV2 opens a USB communication pipe to endpoint EP5 IN and EP5 OUT.
* In my LV2 3.55 dump, pipe to EP5 IN has id '''0x2''' and pipe to EP5 OUT has id '''0x3'''. Array of all opened USB pipes is at address '''0x80000000004bd000''' in my LV2 3.55 dump.
* EP5 is used to send commands to Jupiter and receive events from it.
* EP6 is used to send/receive data packets to/from the 1st WLAN device.
* EP7 is used to send/receive data packets to/from the 2nd WLAN device.
* '''lsusb is buggy on big-endian arch and shows some fields with bytes swapped !!!'''


<pre>
offset 0x4 - PUT index (4 bytes)
Bus 002 Device 002: ID 054c:036f Sony Corp.  
 
Device Descriptor:
* GET index is updated by Gelic driver. The Gelic driver reads events beginning with the event slot at index GET.
  bLength                18
* PUT index is the index of event entry where next Gelic event will be stored by the Gelic device.
  bDescriptorType        1
* If GET index is equal to PUT index then there are no Gelic events.
  bcdUSB              2.00
 
  bDeviceClass          224 Wireless
=== GameOS ===
  bDeviceSubClass        1 Radio Frequency
 
  bDeviceProtocol        1 Bluetooth
* LV2 syscall 726 sends Gelic device command and blocks until a response from the Gelic device arrives
  bMaxPacketSize0        64
* LV2 kernel uses this LV1 interface to send commands to Gelic device internally too, probably for wireless controllers and Wake On WLAN.  
  idVendor          0x054c Sony Corp.
* The system call 726 is used heavily by VSH.
  idProduct          0x036f
 
  bcdDevice          20.12
==== Parameters ====
  iManufacturer          1
 
  iProduct                2
r3 - command (16 bits)
  iSerial                0
 
  bNumConfigurations      1
r4 - effective address of command data buffer
    Interface Descriptor:
 
      bLength                9
r5 - size of command data buffer
      bDescriptorType        4
 
      bInterfaceNumber        3
=== Commands ===
      bAlternateSetting      0
 
      bNumEndpoints          2
====Unknown (0x1)====
      bInterfaceClass      255 Vendor Specific Class
 
      bInterfaceSubClass      2
* Used by VSH.
      bInterfaceProtocol      1
* Command buffer size is '''0x10'''.
      iInterface              0
* Used in AP mode.
      Endpoint Descriptor:
* Enables AP mode ???
        bLength                7
 
        bDescriptorType        5
====Get AP SSID (0x3)====
        bEndpointAddress    0x85  EP 5 IN
 
        bmAttributes            3
* Command buffer is of size '''0x30'''.
          Transfer Type            Interrupt
* Returns SSID in AP mode.
          Synch Type              None
 
          Usage Type              Data
offset 0xC - SSID (32 bytes)
        wMaxPacketSize    0x4000  1x 0 bytes
 
        bInterval              1
====Set AP SSID (0x5)====
      Endpoint Descriptor:
 
        bLength                7
* Used by VSH.
        bDescriptorType        5
* Command buffer is of size '''0x30'''.
        bEndpointAddress    0x05  EP 5 OUT
* Sets SSID in AP mode.
        bmAttributes            3
 
          Transfer Type            Interrupt
offset 0xC - SSID (32 bytes)
          Synch Type              None
 
          Usage Type              Data
====Get Channel (0xf)====
        wMaxPacketSize    0x4000  1x 0 bytes
 
        bInterval              1
* Used by VSH.
    Interface Descriptor:
* Command buffer is of size '''0x31'''.
      bLength                9
* Data is returned from the device.
      bDescriptorType        4
* Returns list of channels and active channel.
      bInterfaceNumber        4
 
      bAlternateSetting      0
offset 0x2F - active channel (2 bytes)
      bNumEndpoints          2
 
      bInterfaceClass      255 Vendor Specific Class
====Set Channel (0x11)====
      bInterfaceSubClass      2
 
      bInterfaceProtocol      2
* Used by VSH.
      iInterface              0
* Command buffer size is '''0xd'''
      Endpoint Descriptor:
* Valid channels: '''0 - 13'''. '''0''' means that the channel is selected '''automatically'''.
        bLength                7
 
        bDescriptorType        5
offset 0xC - channel (1 byte)
        bEndpointAddress    0x86  EP 6 IN
 
        bmAttributes            2
====Unknown (0x27)====
          Transfer Type            Bulk
 
          Synch Type              None
* Command buffer size is '''0xF'''.
          Usage Type              Data
 
        wMaxPacketSize    0x0002  1x 2 bytes
====Set Antenna (0x29)====
        bInterval              0
 
      Endpoint Descriptor:
* Command buffer size is '''0xe'''
        bLength                7
        bDescriptorType        5
        bEndpointAddress    0x06  EP 6 OUT
        bmAttributes            2
          Transfer Type            Bulk
          Synch Type              None
          Usage Type              Data
        wMaxPacketSize    0x0002  1x 2 bytes
        bInterval            255
    Interface Descriptor:
      bLength                9
      bDescriptorType        4
      bInterfaceNumber        5
      bAlternateSetting      0
      bNumEndpoints          2
      bInterfaceClass      255 Vendor Specific Class
      bInterfaceSubClass      2
      bInterfaceProtocol      3
      iInterface              0  
      Endpoint Descriptor:
        bLength                7
        bDescriptorType        5
        bEndpointAddress    0x87  EP 7 IN
        bmAttributes            2
          Transfer Type            Bulk
          Synch Type              None
          Usage Type              Data
        wMaxPacketSize    0x0002  1x 2 bytes
        bInterval              0
      Endpoint Descriptor:
        bLength                7
        bDescriptorType        5
        bEndpointAddress    0x07  EP 7 OUT
        bmAttributes            2
          Transfer Type            Bulk
          Synch Type              None
          Usage Type              Data
        wMaxPacketSize    0x0002  1x 2 bytes
        bInterval            255
</pre>


===Device Initialization===
offset 0xC - ??? (1 byte)


* LV2 does 2 control transfers to EP0 during WLAN initialization
offset 0xD - ??? (1 byte)
* First control transfer sends magic '''0x20''' data to device as '''CLEAR_FEATURE''' request.
* Second control transfer reads '''0x2''' bytes device status. On my PS3 slim, the status data is always '''0x2031''' if you send the right magic.
* Magic data sent in first control transfer is stored in LV2.
* '''If you send wrong magic, the first control transfer will fail !!!'''
* LV2 uses a state machine to initialize the Jupiter device. The state machine has 17 states.


==== Magic Data in Control Transfer ====
====Set AP WEP Configuration (0x5b)====


<pre>
* Used by VSH.
unsigned char ps3_usb_wlan_magic_data[] = {
* Command buffer is of size '''0x56'''.
0x76, 0x4e, 0x4b, 0x07, 0x24, 0x42, 0x53, 0xfb, 0x5a, 0xc7, 0xcc, 0x1d, 0xae, 0x00, 0xc6, 0xd8,
* Sets WEP security type and WEP key.
0x14, 0x40, 0x61, 0x8b, 0x13, 0x17, 0x4d, 0x7c, 0x3b, 0xb6, 0x90, 0xb8, 0x6e, 0x8b, 0xbb, 0x1d,
* Security types: 0 - none, 1 - wep64, 2 - wep128
};
</pre>


==== Initialization State Machine ====
offset 0xE - security mode: 0 - none, 1 - wep64, 2 - wep128 (1 byte)


* Implemented in LV2.
offset 0x10 - WEP key (64 bytes)


=====State 1=====
====Unknown (0x61)====


* Command '''0x114f''' is sent to WLAN device.
* Used by VSH.
* Command buffer size is '''0xd'''


=====State 2=====
====Unknown (0x65)====


* Command '''0x1171''' is sent to WLAN device.
* Used by VSH.
* Command uffer size is '''0xd'''.
* Used in AP mode.


=====State 3=====
====Get Eurus Firmware Version (0x99)====


* LV2 waits for an event from WLAN device.
* Used by VSH.


=====State 4=====
Here is the response on my PS3 Slim:
<pre>
00000000: 4a 55 50 49 54 45 52 2d 54 57 4f 2d 46 57 2d 32 |JUPITER-TWO-FW-2|
00000010: 30 2e 30 2e 31 32 2e 70 30 28 4a 61 6e 20 31 39 |0.0.12.p0(Jan 19|
00000020: 20 32 30 31 30 20 32 31 3a 32 30 3a 35 33 29 00 | 2010 21:20:53).|
00000030: 00 00 00 00 00 00 00 00 00 00 00 00 00 00      |..............  |
</pre>


* Command '''0x116f''' is sent to WLAN device.
====Get AP Operating Mode (0xb7)====


=====State 5=====
* Used by VSH.
* Command buffer size is '''0x10'''
* Returns AP operating mode (mixed, 11b or 11g).


* Command '''0x115b''' is sent to WLAN device.
offset 0xC - opmode: 0 - 11b, 1 - 11g, 2 - 11bg (4 bytes)
* Command data sent to WLAN device contains MAC address.


=====State 6=====
====Set AP Operating Mode (0xb9)====


* Command '''0x1161''' is sent to WLAN device.
* Used by VSH.
* Sets multicast address filter.
* Command buffer size is '''0x10'''
* Sets AP operating mode (mixed, 11b or 11g).


=====State 7=====
offset 0xC - opmode: 0 - 11b, 1 - 11g, 2 - 11bg (4 bytes)


* Command '''0x110d''' is sent to WLAN device.
====Unknown (0xc5)====


=====State 8=====
* Used by VSH.
* Command buffer size is '''0x10'''.
* Used in AP mode.


* Command '''0x1031''' is sent to WLAN device.
offset 0xC - ??? (4 bytes)


=====State 9=====
====Set AP WPA AKM Suite (0xc9)====


* Command '''0x1041''' is sent to WLAN device.
* Used by VSH.
* Command data sent to WLAN device contains MAC address.
* Command buffer size is '''0x11'''.
* Sets WPA AKM suite in AP mode.


=====State 10=====
offset 0xC - AKM suite (4 bytes)


* Command '''0x29''' is sent to WLAN device.
====Set AP WPA Group Cipher Suite (0xcf)====
* Sets antenna.


=====State 11=====
* Used by VSH.
* Command buffer size is '''0x10'''
* Used in AP + WPA mode.


* Command '''0x110b''' is sent to WLAN device.
offset 0xC - group cipher suite: group (4 bytes)
 
====Set AP WPA PSK Binary (0xd3)====
 
* Used by VSH.
* Command buffer size is '''0x4c'''
* Sets WPA PSK binary
 
offset 0xC - PSK (64 bytes)


=====State 12=====
====Set AP WPA Reauthentication Timeout (0xd5)====


* Command '''0x1109''' is sent to WLAN device.
* Used by VSH.
* Command buffer size is '''0x10'''
* Sets WPA Reauth timeout value in AP WPA mode.
* VSH uses 36000 as timeout.


=====State 13=====
offset 0xC - timeout value in seconds (2 bytes)


* Command '''0x207''' is sent to WLAN device.
====Unknown (0x127)====


=====State 14=====
* Used by VSH.
* Command buffer size is '''0x10'''.
* Used in AP + WPA mode.


* Command '''0x203''' is sent to WLAN device.
====Unknown (0x12b)====


=====State 15=====
* Used by VSH.
* Command buffer size is '''0x10'''.
* Used in AP + WPA mode.


* Command '''0x105f''' is sent to WLAN device.
====Set AP WPA PSK Passphrase (0x17d)====
* Command data sent to WLAN device contains MAC address, channel info and region code.


=====State 16=====
* Used by VSH.
* Command buffer size is '''0x2D'''


* LV2 waits for an event from WLAN device.
offset 0xD - passphrase (32 bytes)


=====State 17=====
====Set AP WPA Pairwise Cipher Suite (0x1bf)====


* LV2 accepts commands sent by LV2 syscall 726.
* Used by VSH.
* Command buffer size is '''0x11'''
* Used in AP + WPA mode.


===Test Program===
offset 0xC - pairwise cipher suite (4 bytes)


* Here is a small program which executes a WLAN scan.
offset 0x10 - ??? (1 byte)
* I used libusb.


====Source Code====
====Unknown (0x1d9)====
<pre>


/*
* Used by VSH.
* PS3 USB WLAN
* Command buffer size is '''0x10'''
*
* Copyright (C) 2011 glevand ([email protected])
* All rights reserved.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published
* by the Free Software Foundation; version 2 of the License.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/


#include <stdio.h>
====Unknown (0x1dd)====
#include <stdlib.h>
#include <string.h>
#include <ctype.h>
#include <stdint.h>
#include <unistd.h>
#include <pthread.h>


#include <libusb-1.0/libusb.h>
* Used by VSH.
* Command buffer size is '''0xd'''


#define USB_VENDOR_ID 0x054c /* $ONY */
====Unknown (0x1ed)====
#define USB_PRODUCT_ID 0x036f
#define USB_IFACE_NUMBER 3


#define USB_INTR_TRANSFER_EP5_IN_BUF_SIZE 0x800
* Used by VSH.
#define USB_INTR_TRANSFER_EP5_OUT_BUF_SIZE 0x800
* Command buffer is of size '''0x17'''.
* Rate control ???


struct wlan_cmd_pkt_hdr {
====Get Eurus HW Revision (0x1fb)====
uint8_t unknown1;
uint8_t unknown2;
uint8_t unknown3;
uint8_t unknown4;
uint16_t unknown5;
uint8_t res1[2];
uint16_t tag;
uint8_t res2[14];
} __attribute__ ((packed));


struct wlan_cmd_hdr {
* Command buffer size is '''0x10'''.
uint16_t command;
uint16_t tag;
uint16_t status;
uint16_t payload_size;
uint8_t res[4];
} __attribute__ ((packed));


struct wlan_event_pkt_hdr {
====Associate (0x1001)====
uint8_t unknown1;
uint8_t unknown2;
uint8_t unknown3;
uint8_t event_count;
} __attribute__ ((packed));


static libusb_context *usb_ctx;
* Used by VSH.
static libusb_device_handle *usb_dev_handle;
* Used by LV1 on FAT models.
* Command buffer size is '''0xd'''
* Data passed to Gelic device is all 0s


static struct libusb_transfer *usb_intr_transfer_ep5_in;
====Get Common Configuration (0x1003)====
static unsigned char usb_intr_transfer_ep5_in_buf[USB_INTR_TRANSFER_EP5_IN_BUF_SIZE];


static unsigned char usb_intr_transfer_ep5_out_buf[USB_INTR_TRANSFER_EP5_OUT_BUF_SIZE];
* Used by VSH.
* Used by LV1 on FAT models.
* Command buffer size is '''0x18'''
* Data passed to Gelic device is all 0s


static pthread_mutex_t usb_wlan_cmd_mutex;
====Set Common Configuration (0x1005)====
static pthread_cond_t usb_wlan_cmd_cond;
static int volatile usb_wlan_cmd_busy;
static uint16_t usb_wlan_cmd;
static void *usb_wlan_cmd_data;


static int volatile usb_wlan_cmd_thread_done;
* Used by VSH.
* Used by LV1 on FAT models.
* Command buffer size is '''0x18'''
* Hmm, VSH always removes QOS bit from capability, that means Jupiter doesn't support QOS ???


/*
offset 0xC - BSS type: 0 - infrastructure, 1 - ???, 2 - adhoc (1 byte)
* WLAN won't work without this magic !!!
*/
static unsigned char usb_magic_data[] = {
0x76, 0x4e, 0x4b, 0x07, 0x24, 0x42, 0x53, 0xfb, 0x5a, 0xc7, 0xcc, 0x1d, 0xae, 0x00, 0xc6, 0xd8,
0x14, 0x40, 0x61, 0x8b, 0x13, 0x17, 0x4d, 0x7c, 0x3b, 0xb6, 0x90, 0xb8, 0x6e, 0x8b, 0xbb, 0x1d,
};


static unsigned char my_mac_addr[] = {
offset 0xD - authentication mode: 0 - open, 1 - shared key
0x00, 0x11, 0x22, 0x33, 0x44, 0x55,
};


/*
offset 0xE - opmode: 0 - 11bg, 1 - 11b, 2 - 11g (1 byte)  
* hexdump
*/
static void hexdump(const unsigned char *data, unsigned int data_size)
{
int i, j;


for (i = 0; i < data_size; i += 16) {
offset 0xF - ??? (1 byte)
fprintf(stdout, "%08x:", i);


for (j = 0; j < 16; j++) {
offset 0x10 - BSSID (6 bytes)
if (i + j < data_size) {
fprintf(stdout, " %02x", data[i + j]);
} else {
fprintf(stdout, "  ");
}
}


fprintf(stdout, " |");
offset 0x16 - capability (2 bytes)


for (j = 0; j < 16; j++) {
====Get WEP Configuration (0x1013)====
if (i + j < data_size) {
if (isprint(data[i + j]))
fprintf(stdout, "%c", data[i + j]);
else
fprintf(stdout, ".");
} else {
fprintf(stdout, " ");
}
}


fprintf(stdout, "|\n");
* Used by VSH.
}
* Used by LV1 on FAT models.
}
* Command buffer size is '''0x50'''
* Data passed to Gelic device is all 0s
 
====Set WEP Configuration (0x1015)====
 
* Used by VSH.
* Used by LV1 on FAT models.
* Command buffer size is '''0x50'''


/*
====Get WPA Configuration (0x1017)====
* usb_handle_wlan_event
*/
static void usb_handle_wlan_event(struct wlan_event_pkt_hdr *wlan_event_pkt_hdr)
{
fprintf(stdout, "%s:%d: === got WLAN event ===\n", __func__, __LINE__);


/*
* Used by VSH.
fprintf(stdout, "%s:%d: event packet header:\n", __func__, __LINE__);
* Used by LV1 on FAT models.
fprintf(stdout, "%s:%d: unknown1 (0x%02x)\n", __func__, __LINE__,
* Command buffer size is '''0x5b'''
wlan_event_pkt_hdr->unknown1);
* Data passed to Gelic device is all 0s
fprintf(stdout, "%s:%d: unknown2 (0x%02x)\n", __func__, __LINE__,
wlan_event_pkt_hdr->unknown2);
fprintf(stdout, "%s:%d: unknown3 (0x%02x)\n", __func__, __LINE__,
wlan_event_pkt_hdr->unknown3);
*/
fprintf(stdout, "%s:%d: event_count (0x%02x)\n", __func__, __LINE__,
wlan_event_pkt_hdr->event_count);


hexdump((unsigned char *) (wlan_event_pkt_hdr + 1), wlan_event_pkt_hdr->event_count * 64);
====Set WPA Configuration (0x1019)====
}


/*
* Used by VSH.
* usb_handle_wlan_cmd_response
* Used by LV1 on FAT models.
*/
* Command buffer size is '''0x5b'''
static void usb_handle_wlan_cmd_response(struct wlan_cmd_pkt_hdr *wlan_cmd_pkt_hdr)
{
struct wlan_cmd_hdr *wlan_cmd_hdr;
uint8_t *wlan_cmd_payload;


fprintf(stdout, "%s:%d: === got WLAN command response ===\n", __func__, __LINE__);
offset 0xE - security type: 0 - WPA, 1 - RSNA (1 byte)


wlan_cmd_hdr = (struct wlan_cmd_hdr *) (wlan_cmd_pkt_hdr + 1);
offset 0xF - psk type: 0 - hex, 1 - bin (1 byte)
wlan_cmd_payload = (uint8_t *) (wlan_cmd_hdr + 1);


/* convert all header fields to big-endian byte order !!! */
offset 0x10 - psk key: hex or bin (64 bytes)


wlan_cmd_pkt_hdr->unknown5 = le16toh(wlan_cmd_pkt_hdr->unknown5);
offset 0x50 - group cipher suite: 0x0050f202 - WPA TKIP, 0x0050f204 - WPA AES, 0x000fac02 - RSNA TKIP, 0x000fac04 - RSNA CCMP (4 bytes)
wlan_cmd_pkt_hdr->tag = le16toh(wlan_cmd_pkt_hdr->tag); /* returned from request */


wlan_cmd_hdr->command = le16toh(wlan_cmd_hdr->command); /* request command + 1 */
offset 0x54 - pairwise cipher suite: 0x0050f202 - WPA TKIP, 0x0050f204 - WPA AES, 0x000fac02 - RSNA TKIP, 0x000fac04 - RSNA CCMP (4 bytes)
wlan_cmd_hdr->tag = le16toh(wlan_cmd_hdr->tag); /* returned from request */
wlan_cmd_hdr->status = le16toh(wlan_cmd_hdr->status); /* 1 - success
  2 - invalid parameters ???
  3 - invalid command ??? */
wlan_cmd_hdr->payload_size = le16toh(wlan_cmd_hdr->payload_size); /* length of data that follows the header */


/*
offset 0x58 - AKM suite: 0x0050f202 - WPA PSK, 0x000fac02 - RSNA PSK (4 bytes)
fprintf(stdout, "%s:%d: command packet header:\n", __func__, __LINE__);
fprintf(stdout, "%s:%d: unknown1 (0x%02x)\n", __func__, __LINE__,
wlan_cmd_pkt_hdr->unknown1);
fprintf(stdout, "%s:%d: unknown2 (0x%02x)\n", __func__, __LINE__,
wlan_cmd_pkt_hdr->unknown2);
fprintf(stdout, "%s:%d: unknown3 (0x%02x)\n", __func__, __LINE__,
wlan_cmd_pkt_hdr->unknown3);
fprintf(stdout, "%s:%d: unknown4 (0x%02x)\n", __func__, __LINE__,
wlan_cmd_pkt_hdr->unknown4);
fprintf(stdout, "%s:%d: unknown5 (0x%04x)\n", __func__, __LINE__,
wlan_cmd_pkt_hdr->unknown5);
fprintf(stdout, "%s:%d: tag (0x%04x)\n", __func__, __LINE__,
wlan_cmd_pkt_hdr->tag);
*/


fprintf(stdout, "%s:%d: command header:\n", __func__, __LINE__);
'''See IEEE 802.11 specification for more details about cipher/AKM suites
fprintf(stdout, "%s:%d: command (0x%04x)\n", __func__, __LINE__,
'''
wlan_cmd_hdr->command);


if ((usb_wlan_cmd + 1) != wlan_cmd_hdr->command)
802.11 spec: [http://standards.ieee.org/getieee802/download/802.11-2007.pdf]
fprintf(stdout, "%s:%d: ==> command does not match, got (0x%04x) expected (0x%04x)\n",
__func__, __LINE__, wlan_cmd_hdr->command, usb_wlan_cmd + 1);


fprintf(stdout, "%s:%d: tag (0x%04x)\n", __func__, __LINE__,
====Unknown (0x1025)====
wlan_cmd_hdr->tag);
fprintf(stdout, "%s:%d: status (0x%04x)\n", __func__, __LINE__,
wlan_cmd_hdr->status);


if (wlan_cmd_hdr->status != 0x1)
* Used by VSH.
fprintf(stdout, "%s:%d: ==> command status != 0x1\n", __func__, __LINE__);
* Command buffer size is '''0x10'''.
* Sets preamble type, something else ???


fprintf(stdout, "%s:%d: payload_size (0x%04x)\n", __func__, __LINE__,
offset 0xC - preamble mode: 0 - short, 1 - long (1 byte)
wlan_cmd_hdr->payload_size);


fprintf(stdout, "%s:%d: command payload:\n", __func__, __LINE__);
====Unknown (0x1031)====


hexdump(wlan_cmd_payload, wlan_cmd_hdr->payload_size);
* Used by VSH.
* Command buffer size is '''0xe'''


memcpy(usb_wlan_cmd_data, wlan_cmd_payload, wlan_cmd_hdr->payload_size);
====Get Scan Results (0x1033)====


pthread_mutex_lock(&usb_wlan_cmd_mutex);
* Used by VSH.
* Used by LV1 on FAT models.
* Command buffer size is '''0x5b0'''
* Data passed to Gelic device is all 0s


usb_wlan_cmd_busy = 0;
=====Scan Results=====


pthread_cond_signal(&usb_wlan_cmd_cond);
offset 0x0 - number of scan entries (1 byte)


pthread_mutex_unlock(&usb_wlan_cmd_mutex);
offset 0x1 - array of scan entries
}


/*
======Scan Entry======
* usb_intr_transfer_ep5_in_cb
*/
static void usb_intr_transfer_ep5_in_cb(struct libusb_transfer *transfer)
{
struct wlan_cmd_pkt_hdr *wlan_cmd_pkt_hdr;
int error;


fprintf(stdout, "%s:%d: === got interrupt transfer ===\n", __func__, __LINE__);
offset 0x0 - size of this entry in bytes, this field is NOT included (2 bytes)


fprintf(stdout, "%s:%d: transfer status (%d) length (%d)\n",
offset 0x2 - BSSID (6 bytes)
__func__, __LINE__, transfer->status, transfer->actual_length);


wlan_cmd_pkt_hdr = (struct wlan_cmd_pkt_hdr *) transfer->buffer;
offset 0x8 - RSSI (1 byte)


if (wlan_cmd_pkt_hdr->unknown3 == 0x6)
offset 0x9 - timestamp (8 bytes)
usb_handle_wlan_cmd_response(wlan_cmd_pkt_hdr);
else if (wlan_cmd_pkt_hdr->unknown3 == 0x8)
usb_handle_wlan_event((struct wlan_event_pkt_hdr *) transfer->buffer);
else
fprintf(stdout, "%s:%d: got unknown packet (0x%02x)\n",
__func__, __LINE__, wlan_cmd_pkt_hdr->unknown3);


memset(usb_intr_transfer_ep5_in_buf, 0, sizeof(usb_intr_transfer_ep5_in_buf));
offset 0x11 - beacon period (2 bytes)


libusb_fill_interrupt_transfer(usb_intr_transfer_ep5_in, usb_dev_handle, LIBUSB_ENDPOINT_IN | 0x5,
offset 0x13 - capability (2 bytes)
usb_intr_transfer_ep5_in_buf, sizeof(usb_intr_transfer_ep5_in_buf),
usb_intr_transfer_ep5_in_cb, NULL, 0);


error = libusb_submit_transfer(usb_intr_transfer_ep5_in);
offset 0x15 - information elements (see 802.11 specification)
if (error) {
fprintf(stderr, "%s:%d: could not submit transfer (%d)\n",
__func__, __LINE__, error);
exit(1);
}
}


/*
====Start Scan (0x1035)====
* usb_intr_transfer_ep5_out_cb
*/
static void usb_intr_transfer_ep5_out_cb(struct libusb_transfer *transfer)
{
/*
fprintf(stdout, "%s:%d: sent interrupt transfer\n", __func__, __LINE__);


fprintf(stdout, "%s:%d: transfer status (%d)\n", __func__, __LINE__, transfer->status);
* Used by VSH.
*/
* Used by LV1 on FAT models.
* Command buffer size depends on size of channel list and ESSID string length
* Data passed to Gelic device contains channel list and ESSID string
* First '''0x16''' bytes in command data buffer are all 0s, then follows the channel list and after that ESSID


libusb_free_transfer(transfer);
====Diassociate (0x1037)====
}


/*
* Used by VSH.
* usb_wlan_cmd_send
* Used by LV1 on FAT models.
*/
* Command buffer size is '''0xd'''
static int usb_wlan_cmd_send(uint16_t command, const uint8_t *data, unsigned int data_size)
* Data passed to Gelic device is all 0s
{
struct wlan_cmd_pkt_hdr *wlan_cmd_pkt_hdr;
struct wlan_cmd_hdr *wlan_cmd_hdr;
uint8_t *wlan_cmd_payload;
struct libusb_transfer *transfer;
int error;


fprintf(stdout, "%s:%d: sending command (0x%04x) data size (0x%04x) command size (0x%04x)\n",
====Get RSSI (0x103d)====
__func__, __LINE__, command, data_size, data_size + sizeof(struct wlan_cmd_hdr));


transfer = libusb_alloc_transfer(0);
* Used by VSH.
if (!transfer) {
* Used by LV1 on FAT models.
fprintf(stderr, "%s:%d: could not allocate transfer\n", __func__, __LINE__);
* Command buffer size is '''0x17'''
error = -1;
goto fail;
}


wlan_cmd_pkt_hdr = (struct wlan_cmd_pkt_hdr *) usb_intr_transfer_ep5_out_buf;
offset 0x10 - MAC address of node (6 bytes)
wlan_cmd_hdr = (struct wlan_cmd_hdr *) (wlan_cmd_pkt_hdr + 1);
wlan_cmd_payload = (uint8_t *) (wlan_cmd_hdr + 1);


wlan_cmd_pkt_hdr->unknown1 = 0x1;
offset 0x16 - RSSI (1 byte)
wlan_cmd_pkt_hdr->unknown2 = 0x1;
wlan_cmd_pkt_hdr->unknown3 = 0x6;
wlan_cmd_pkt_hdr->unknown4 = 0x0;
wlan_cmd_pkt_hdr->unknown5 = 0x1;
wlan_cmd_pkt_hdr->tag = 0xf00d; /* returned in response */


wlan_cmd_hdr->command = command;
====Get MAC Address (0x103f)====
wlan_cmd_hdr->tag = 0xcafe; /* returned in response */
wlan_cmd_hdr->status = 0xa;
wlan_cmd_hdr->payload_size = data_size;


memcpy(wlan_cmd_payload, data, data_size);
* Command buffer size is '''0x13'''


usb_wlan_cmd = command;
offset 0xD - MAC address (6 bytes)
usb_wlan_cmd_data = (void *) data;


libusb_fill_interrupt_transfer(transfer, usb_dev_handle, LIBUSB_ENDPOINT_OUT | 0x5,
====Set MAC Address (0x1041)====
usb_intr_transfer_ep5_out_buf,
sizeof(struct wlan_cmd_pkt_hdr) + sizeof(struct wlan_cmd_hdr) + wlan_cmd_hdr->payload_size,
usb_intr_transfer_ep5_out_cb, NULL, 0);


/* convert all header fields to little-endian byte order !!! */
* Used by VSH.
* Used by LV1 too.
* Command buffer size is '''0x12'''


wlan_cmd_pkt_hdr->unknown5 = htole16(wlan_cmd_pkt_hdr->unknown5);
====Unknown (0x104d)====
wlan_cmd_pkt_hdr->tag = htole16(wlan_cmd_pkt_hdr->tag);


wlan_cmd_hdr->command = htole16(wlan_cmd_hdr->command);
* Used by VSH.
wlan_cmd_hdr->tag = htole16(wlan_cmd_hdr->tag);
* Command buffer size is '''0xd'''.
wlan_cmd_hdr->status = htole16(wlan_cmd_hdr->status);
wlan_cmd_hdr->payload_size = htole16(wlan_cmd_hdr->payload_size);


error = libusb_submit_transfer(transfer);
offset 0xC - 0 - ???, 1 - ??? (1 byte)
if (error) {
fprintf(stderr, "%s:%d: could not submit transfer (%d)\n",
__func__, __LINE__, error);
goto fail_free_transfer;
}


pthread_mutex_lock(&usb_wlan_cmd_mutex);
====Unknown (0x104f)====


usb_wlan_cmd_busy = 1;
* Command buffer size is '''0xd'''.
* Returns 1 byte.


while (usb_wlan_cmd_busy)
offset 0xC - 0 - ???, 1 - ??? (1 byte)
pthread_cond_wait(&usb_wlan_cmd_cond, &usb_wlan_cmd_mutex);


pthread_mutex_unlock(&usb_wlan_cmd_mutex);
====Unknown (0x1051)====


return 0;
* Used by VSH.
* Command buffer size is '''0x5b3'''.
* Returns '''0x5a7''' bytes.


fail_free_transfer:
offset 0xC - number of entries


libusb_free_transfer(transfer);
offset 0x10 - entries (each entry is 0xd bytes)


fail:
====Unknown (0x1053)====


return error;
* Used by VSH.
}
* Command buffer size is '''0x70'''.


/*
offset 0xC - ??? (4 bytes)
* usb_wlan_cmd_start_scan
*/
static int usb_wlan_cmd_start_scan(void)
{
unsigned char data[256], *ptr;
unsigned int data_size;


memset(data, 0, sizeof(data));
offset 0x10 - MAC address (6 bytes)


ptr = data;
====Unknown (0x1059)====
*ptr++ = 0x0;
*ptr++ = 0x1;
*ptr++ = 0x64;
*ptr++ = 0x0;


ptr = data + 0xa;
* Used by VSH.
*ptr++ = 0x3;
* Command buffer size is '''0x2a8'''.


*ptr++ = 13; /* number of channels */
====Unknown (0x105f)====
*ptr++ = 1; /* channels */
*ptr++ = 2;
*ptr++ = 3;
*ptr++ = 4;
*ptr++ = 5;
*ptr++ = 6;
*ptr++ = 7;
*ptr++ = 8;
*ptr++ = 9;
*ptr++ = 10;
*ptr++ = 11;
*ptr++ = 12;
*ptr++ = 13;


data_size = ptr - data;
* Used by LV2.


return usb_wlan_cmd_send(0x1035, data, data_size);
====Get Zephyr HW Revision (0x1101)====
}


/*
* Used by VSH.
* usb_wlan_cmd_get_scan_results
* Not a Gelic device command, handled by LV2 kernel.
*/
* LV2 uses LV1 call '''lv1_net_control(0x8000000000000002)'''
static int usb_wlan_cmd_get_scan_results(void)
* Command buffer size is '''0x18'''.
{
unsigned char data[1456];
unsigned int data_size;


memset(data, 0, sizeof(data));
====Get MAC Address List (0x1117)====


data_size = sizeof(data);
* Command buffer size is '''0xce'''.
* Returns several MAC addresses.


return usb_wlan_cmd_send(0x1033, data, data_size);
offset 0xC - number of MAC addresses (2 bytes)
}


/*
offset 0xE - MAC addresses (6 * number of MAC addresses)
* usb_wlan_cmd_0x99
*/
static int usb_wlan_cmd_0x99(void)
{
unsigned char data[0x3e];
unsigned int data_size;


memset(data, 0, sizeof(data));
====Unknown (0x1133)====


data_size = sizeof(data);
* Used by VSH.
* Command buffer size is '''0x1A'''.


return usb_wlan_cmd_send(0x99, data, data_size);
====Set WOL MAC Address Filter (0x1139)====
}


/*
* Used by LV2 internally.
* usb_wlan_init
* Command buffer is of size '''0x28'''.
*/
static int usb_wlan_init(void)
{
unsigned char data[1456], *ptr;
unsigned int data_size;
int error;


/* state 0x1 */
====Unknown (0x113b)====


memset(data, 0, sizeof(data));
* Used by LV2 internally.
* Command buffer size is '''0x20'''.


data_size = 0x518;
====Set WOL Multicast Address Filter (0x113d)====


error = usb_wlan_cmd_send(0x114f, data, data_size);
* Used by LV2 internally.
if (error) {
* Command buffer is of size '''0x2c'''.
fprintf(stderr, "%s:%d: could not send command 0x114f (%d)\n",
__func__, __LINE__, error);
return error;
}


sleep(2);
====Clear WOL Multicast Address Filter (0x113f)====


/* state 0x2 */
* Used by LV2 internally.
* Command buffer is of size '''0x28'''.


memset(data, 0, sizeof(data));
====Unknown (0x1141)====


data_size = 0;
* Used by LV2 internally.
* Command buffer is of size 0x12.


error = usb_wlan_cmd_send(0x1171, data, data_size);
====Clear WOL Address Filter (0x1143)====
if (error) {
fprintf(stderr, "%s:%d: could not send command 0x1171 (%d)\n",
__func__, __LINE__, error);
return error;
}


sleep(2);
* Used by LV2 internally.
* Command buffer size is '''0x2c'''.


/* wait for a WLAN event */
====Unknown (0x114b)====


/* state 0x4 */
* Used by LV2 internally.
 
====Set WOL Magic Packet Mode (0x1155)====


memset(data, 0, sizeof(data));
* Used by LV2 internally.
* Command buffer is of size '''0x10'''.
* Enables/Disables WOL magic packet.


ptr = data;
offset 0xC - mode: 0 - disable, 1 - enable (4 bytes)


*ptr++ = 0x1;
====Unknown (0x1157)====


data_size = 0x4;
* Used by LV2 internally.
* Command buffer size is '''0x10'''.


error = usb_wlan_cmd_send(0x116f, data, data_size);
====Set WOL Multicast Address Filter Mode (0x1159)====
if (error) {
fprintf(stderr, "%s:%d: could not send command 0x116f (%d)\n",
__func__, __LINE__, error);
return error;
}


sleep(2);
* Used by LV2 internally.
* Command buffer size is '''0x10'''.
* WOL function


/* state 0x5 */
offset 0xC - mode: 0 - disable, 1 - enable (4 bytes)


memset(data, 0, sizeof(data));
====Set Unicast Address Filter (0x115b)====


ptr = data;
* Used by LV2 internally.
* Command buffer is of size '''0x6a'''.
* This command should be used to set proper MAC address or else device won't be able to receive packets destined to its own MAC address


*ptr++ = 0x1;
offset 0xC - ??? (2 bytes)


ptr = data + 0x4;
offset 0xE - ??? (2 bytes)
memcpy(ptr, my_mac_addr, sizeof(my_mac_addr));


data_size = 0x5e;
offset 0x10 - MAC address (6 bytes)


error = usb_wlan_cmd_send(0x115b, data, data_size);
====Clear Unicast Address Filter (0x115d)====
if (error) {
fprintf(stderr, "%s:%d: could not send command 0x115b (%d)\n",
__func__, __LINE__, error);
return error;
}


sleep(2);
* Used by LV2 internally.
* Command buffer size is '''0x6a'''.


/* state 0x6 */
====Get Unicast Address Filter (0x115f)====


memset(data, 0, sizeof(data));
* Used by LV2 internally.
* Command buffer is of size '''0x6a'''.


ptr = data + 0x1c;
====Set Multicast Address Filter (0x1161)====


*ptr++ = 0x20;
* Used by LV2 internally.
* Command buffer size is '''0x2c'''.


data_size = 0x20;
====Clear Multicast Address Filter (0x1163)====


error = usb_wlan_cmd_send(0x1161, data, data_size);
* Used by LV2 internally.
if (error) {
* Command buffer size is '''0x2c'''
fprintf(stderr, "%s:%d: could not send command 0x1161 (%d)\n",
* To clear all multicast addresses send command with all 0s.
__func__, __LINE__, error);
return error;
}


sleep(2);
offset 0xC - multicast address filter (4 * 8 bytes)


memset(data, 0, sizeof(data));
====Get Multicast Address Filter (0x1165)====


ptr = data + 0xc;
* Used by LV2 internally.
memset(ptr, 0xff, 7 * 4);
* Command buffer is of size '''0x2c'''.


data_size = 0x80;
====Set WOL Address Filter (0x1167)====


error = usb_wlan_cmd_send(0x110d, data, data_size);
* Used by LV2 internally.
if (error) {
* Command buffer size is '''0x70'''.
fprintf(stderr, "%s:%d: could not send command 0x110d (%d)\n",
__func__, __LINE__, error);
return error;
}


sleep(2);
====Set WOL Address Filter Mode (0x116d)====


memset(data, 0, sizeof(data));
* Used by LV2 internally.
* Command buffer size is '''0x10'''.
* Enables/Disables WOL address matching


data_size = 0x2;
offset 0xC - mode: 0 - disable, 1 - enable (4 bytes)


error = usb_wlan_cmd_send(0x1031, data, data_size);
====Set Unicast Address Filter Mode (0x116f)====
if (error) {
fprintf(stderr, "%s:%d: could not send command 0x1031 (%d)\n",
__func__, __LINE__, error);
return error;
}


sleep(2);
* Used by LV2 internally.
* Command buffer size is '''0x10'''.


memset(data, 0, sizeof(data));
offset 0xC - mode: 0 - disable, 1 - enable (4 bytes)


ptr = data;
====Get Device Status (0xfffb)====
memcpy(ptr, my_mac_addr, sizeof(my_mac_addr));


data_size = 0x6;
* Used by VSH.
* Not a Gelic device command, handled by LV2 kernel.
* Returned data size in command buffer is '''0x10'''.


error = usb_wlan_cmd_send(0x1041, data, data_size);
====Unknown (0xfffc)====
if (error) {
fprintf(stderr, "%s:%d: could not send command 0x1041 (%d)\n",
__func__, __LINE__, error);
return error;
}


sleep(2);
* Used by VSH.
* Not a Gelic device command, handled by LV2 kernel.
* LV2 uses LV1 call '''lv1_net_control(0x1 /* bus id */, 0x0 /* dev id */, 0x6 /* get channel info command */, 0x4, 0x0, 0x0)'''


/* state 0xa */
====Get Channel Information (0xfffd)====


memset(data, 0, sizeof(data));
* Used by VSH.
* Not a Gelic device command, handled by LV2 kernel.
* LV2 uses LV1 call '''lv1_net_control(0x1 /* bus id */, 0x0 /* dev id */, 0x6 /* get channel info command */, 0x0, 0x0, 0x0)'''
* Returns supported WLAN channels


ptr = data;
====Set Response Timeout (0xfffe)====


*ptr++ = 0x2;
* Used by VSH.
*ptr++ = 0x2;
* Not a Gelic device command, handled by LV2 kernel.
* Sets timeout value which is used to wait for a response from Gelic device.
* Typical value used by VSH is '''0x989680'''.
* Command buffer size is '''0x14'''.


data_size = 0x2;
====Unknown (0xffff)====


error = usb_wlan_cmd_send(0x29, data, data_size);
* Used by VSH.
if (error) {
* Not a Gelic device command, handled by LV2 kernel.
fprintf(stderr, "%s:%d: could not send command 0x29 (%d)\n",
* Returns 0x10 bytes in command buffer.
__func__, __LINE__, error);
* Returns gelic device state ???
return error;
}


sleep(2);
=== Events ===


memset(data, 0, sizeof(data));
<pre>
struct ps3_eurus_event_hdr {
__le32 type;
__le32 id;
__le32 timestamp;
__le32 payload_length;
__le32 unknown;
} __packed;


ptr = data;
struct ps3_eurus_event {
struct ps3_eurus_event_hdr hdr;
u8 payload[44];
} __packed;
</pre>


*ptr++ = 0x1;
====Event Type 0x00000040====


ptr = data + 8;
{| class="wikitable"
|-
! Id !! Description
|-
| 0x00000001 || Deauthenticated
|}


*ptr++ = 0x20;
====Event Type 0x00000080====


data_size = 0xc;
{| class="wikitable"
 
|-
error = usb_wlan_cmd_send(0x110b, data, data_size);
! Id !! Description
if (error) {
|-
fprintf(stderr, "%s:%d: could not send command 0x110b (%d)\n",
| 0x00000001 || Beacon Lost
__func__, __LINE__, error);
|-
return error;
| 0x00000002 || Connected
}
|-
| 0x00000004 || Scan Completed
|-
| 0x00000020 || WPA Connected
|-
| 0x00000040 || WPA Error (MIC Error)
|}


sleep(2);
====Event Type 0x80000000====


memset(data, 0, sizeof(data));
{| class="wikitable"
|-
! Id !! Description
|-
| 0x00000001 || Device Ready
|}


ptr = data;
== Enabling WLAN Gelic On FAT ==


*ptr++ = 0x1;
Linux kernel doesn't use Gelic Device Control Interface like GameOS does it.
To get WLAN working on Linux booted with GameOS rights, we have to disable
Gelic Device Control Interface first because it's enabled for GameOS by default.


ptr = data + 0x4;
The value of repository node "ios.net.eurus.lpar" controls access to Gelic Device Control Interface.
It's a bitmap. The position of a bit corresponds to LPAR id. During GameOS booting, HV process 9 (System Manager) sets bit at postion 2 to 1 which means enable Gelic Device Control Interface for LPAR 2.


*ptr++ = 0x15;
To disable Gelic Device Control Interface on Linux, first unload Gelic device driver, then set
*ptr++ = 0x27;
value of repository node "ios.net.eurus.lpar" to 0 and load Gelic device driver again. After that WLAN should work again but only on FATs.


*ptr++ = 0x12;
For PS3 Slim we need a new Linux Gelic device driver which uses Gelic Device Control Interface directly.
*ptr++ = 0x0;


*ptr++ = 0x6;
*ptr++ = 0x0;


ptr = data + 0xc;
==USB WLAN Interface (Codename Jupiter 2)==


*ptr++ = 0x9;
* On new PS3 models, WLAN interface is USB.
*ptr++ = 0x0;
* '''Good news is that  the same commands are used as with LV1 calls 196 and 195'''.
*ptr++ = 0x1;
* There are 2 wireless devices: Station and AP.
* I got WLAN scan working.


ptr = data + 0x10;
===Endpoints===


*ptr++ = 0xff;
* LV2 uses 3 USB endpoints of interface 3,4 and 5 to communicate with WLAN.
*ptr++ = 0xff;
* Endpoints EP5 IN/OUT, EP6 IN/OUT and EP7 IN/OUT.
*ptr++ = 0xff;
* '''WLAN commands''' are sent to endpoint '''EP5 OUT''' with '''interrupt transfers'''.
*ptr++ = 0xff;
* '''WLAN events''' and '''WLAN command responses''' are received on endpoint '''EP5 IN''' with '''interrupt transfers'''.
*ptr++ = 0xff;
* LV2 opens a USB communication pipe to endpoint EP5 IN and EP5 OUT.
*ptr++ = 0xff;
* In my LV2 3.55 dump, pipe to EP5 IN has id '''0x2''' and pipe to EP5 OUT has id '''0x3'''. Array of all opened USB pipes is at address '''0x80000000004bd000''' in my LV2 3.55 dump.
* EP5 is used to send commands to Jupiter and receive events from it.
* EP6 is used to send/receive data packets to/from the 1st WLAN device.
* EP7 is used to send/receive data packets to/from the 2nd WLAN device.
* '''lsusb is buggy on big-endian arch and shows some fields with bytes swapped !!!'''


data_size = 0x16;
<pre>
 
Bus 002 Device 002: ID 054c:036f Sony Corp.
error = usb_wlan_cmd_send(0x1109, data, data_size);
Device Descriptor:
if (error) {
  bLength                18
fprintf(stderr, "%s:%d: could not send command 0x1109 (%d)\n",
  bDescriptorType        1
__func__, __LINE__, error);
  bcdUSB              2.00
return error;
  bDeviceClass          224 Wireless
}
  bDeviceSubClass        1 Radio Frequency
 
  bDeviceProtocol        1 Bluetooth
sleep(2);
  bMaxPacketSize0        64
 
  idVendor          0x054c Sony Corp.
memset(data, 0, sizeof(data));
  idProduct          0x036f
 
  bcdDevice          20.12
ptr = data;
  iManufacturer          1
 
  iProduct                2
*ptr++ = 0x1;
  iSerial                0
 
  bNumConfigurations      1
data_size = 0x4;
    Interface Descriptor:
 
      bLength                9
error = usb_wlan_cmd_send(0x207, data, data_size);
      bDescriptorType        4
if (error) {
      bInterfaceNumber        3
fprintf(stderr, "%s:%d: could not send command 0x207 (%d)\n",
      bAlternateSetting      0
__func__, __LINE__, error);
      bNumEndpoints          2
return error;
      bInterfaceClass      255 Vendor Specific Class
}
      bInterfaceSubClass      2  
 
      bInterfaceProtocol      1
sleep(2);
      iInterface              0  
 
      Endpoint Descriptor:
memset(data, 0, sizeof(data));
        bLength                7
 
        bDescriptorType        5
ptr = data;
        bEndpointAddress    0x85  EP 5 IN
 
        bmAttributes            3
*ptr++ = 0x4;
          Transfer Type            Interrupt
 
          Synch Type              None
data_size = 0x4;
          Usage Type              Data
 
        wMaxPacketSize    0x4000  1x 0 bytes
error = usb_wlan_cmd_send(0x203, data, data_size);
        bInterval              1
if (error) {
      Endpoint Descriptor:
fprintf(stderr, "%s:%d: could not send command 0x203 (%d)\n",
        bLength                7
__func__, __LINE__, error);
        bDescriptorType        5
return error;
        bEndpointAddress    0x05  EP 5 OUT
}
        bmAttributes            3
 
          Transfer Type            Interrupt
sleep(2);
          Synch Type              None
 
          Usage Type              Data
/* state 0xf */
        wMaxPacketSize    0x4000  1x 0 bytes
 
        bInterval              1
memset(data, 0, sizeof(data));
    Interface Descriptor:
 
      bLength                9
ptr = data;
      bDescriptorType        4
 
      bInterfaceNumber        4
*ptr++ = 0xff;
      bAlternateSetting      0
*ptr++ = 0x1f;
      bNumEndpoints          2
 
      bInterfaceClass      255 Vendor Specific Class
memcpy(ptr, my_mac_addr, sizeof(my_mac_addr));
      bInterfaceSubClass      2  
 
      bInterfaceProtocol      2
ptr = data + 0x8;
      iInterface              0  
 
      Endpoint Descriptor:
*ptr++ = 0x2;
        bLength                7
*ptr++ = 0x2;
        bDescriptorType        5
 
        bEndpointAddress    0x86  EP 6 IN
data_size = 0xa;
        bmAttributes            2
 
          Transfer Type            Bulk
error = usb_wlan_cmd_send(0x105f, data, data_size);
          Synch Type              None
if (error) {
          Usage Type              Data
fprintf(stderr, "%s:%d: could not send command 0x105f (%d)\n",
        wMaxPacketSize    0x0002  1x 2 bytes
__func__, __LINE__, error);
        bInterval              0
return error;
      Endpoint Descriptor:
}
        bLength                7
        bDescriptorType        5
        bEndpointAddress    0x06  EP 6 OUT
        bmAttributes            2
          Transfer Type            Bulk
          Synch Type              None
          Usage Type              Data
        wMaxPacketSize    0x0002  1x 2 bytes
        bInterval            255
    Interface Descriptor:
      bLength                9
      bDescriptorType        4
      bInterfaceNumber        5
      bAlternateSetting      0
      bNumEndpoints          2
      bInterfaceClass      255 Vendor Specific Class
      bInterfaceSubClass      2
      bInterfaceProtocol      3
      iInterface              0  
      Endpoint Descriptor:
        bLength                7
        bDescriptorType        5
        bEndpointAddress    0x87  EP 7 IN
        bmAttributes            2
          Transfer Type            Bulk
          Synch Type              None
          Usage Type              Data
        wMaxPacketSize    0x0002  1x 2 bytes
        bInterval              0
      Endpoint Descriptor:
        bLength                7
        bDescriptorType        5
        bEndpointAddress    0x07  EP 7 OUT
        bmAttributes            2
          Transfer Type            Bulk
          Synch Type              None
          Usage Type              Data
        wMaxPacketSize    0x0002  1x 2 bytes
        bInterval            255
</pre>
 
===Device Initialization===


return 0;
* LV2 does 2 control transfers to EP0 during WLAN initialization
}
* First control transfer sends magic '''0x20''' data to device as '''CLEAR_FEATURE''' request.
* Second control transfer reads '''0x2''' bytes device status. On my PS3 slim, the status data is always '''0x2031''' if you send the right magic.
* Magic data sent in first control transfer is stored in LV2.
* '''If you send wrong magic, the first control transfer will fail !!!'''
* LV2 uses a state machine to initialize the Jupiter device. The state machine has 17 states.


/*
==== Magic Data in Control Transfer ====
* usb_wlan_cmd_thread
*/
static void *usb_wlan_cmd_thread(void *arg)
{
int error;


error = usb_wlan_init();
<pre>
if (error) {
unsigned char ps3_usb_wlan_magic_data[] = {
fprintf(stderr, "%s:%d: could not initialize device (%d)\n",
0x76, 0x4e, 0x4b, 0x07, 0x24, 0x42, 0x53, 0xfb, 0x5a, 0xc7, 0xcc, 0x1d, 0xae, 0x00, 0xc6, 0xd8,
__func__, __LINE__, error);
0x14, 0x40, 0x61, 0x8b, 0x13, 0x17, 0x4d, 0x7c, 0x3b, 0xb6, 0x90, 0xb8, 0x6e, 0x8b, 0xbb, 0x1d,
goto done;
};
}
</pre>


sleep(5);
==== Initialization State Machine ====


error = usb_wlan_cmd_0x99();
* Implemented in LV2.
if (error) {
fprintf(stderr, "%s:%d: could not start scanning (%d)\n",
__func__, __LINE__, error);
goto done;
}


error = usb_wlan_cmd_start_scan();
=====State 1=====
if (error) {
fprintf(stderr, "%s:%d: could not start scanning (%d)\n",
__func__, __LINE__, error);
goto done;
}


sleep(10);
* Command '''0x114f''' is sent to WLAN device.


error = usb_wlan_cmd_get_scan_results();
=====State 2=====
if (error) {
fprintf(stderr, "%s:%d: could not get scan results (%d)\n",
__func__, __LINE__, error);
goto done;
}


sleep(10);
* Command '''0x1171''' is sent to WLAN device.


done:
=====State 3=====


usb_wlan_cmd_thread_done = 1;
* LV2 waits for an event from WLAN device.


return NULL;
=====State 4=====
}


/*
* Command '''0x116f''' is sent to WLAN device.
* main
*/
int main(int argc, char **argv)
{
unsigned char buf[256];
pthread_t tid;
struct timeval tv;
int error;


pthread_mutex_init(&usb_wlan_cmd_mutex, NULL);
=====State 5=====
pthread_cond_init(&usb_wlan_cmd_cond, NULL);


error = libusb_init(&usb_ctx);
* Command '''0x115b''' is sent to WLAN device.
if (error) {
* Command data sent to WLAN device contains MAC address.
fprintf(stderr, "%s:%d: libusb_init failed (%d)\n", __func__, __LINE__, error);
exit(1);
}


libusb_set_debug(usb_ctx, 5);
=====State 6=====


usb_dev_handle = libusb_open_device_with_vid_pid(usb_ctx, USB_VENDOR_ID, USB_PRODUCT_ID);
* Command '''0x1161''' is sent to WLAN device.
if (!usb_dev_handle) {
* Sets multicast address filter.
fprintf(stderr, "%s:%d: could not open device\n", __func__, __LINE__);
exit(1);
}


if(libusb_kernel_driver_active(usb_dev_handle, USB_IFACE_NUMBER)) {
=====State 7=====
fprintf(stdout, "%s:%d: kernel driver is attached\n", __func__, __LINE__);


error = libusb_detach_kernel_driver(usb_dev_handle, USB_IFACE_NUMBER);
* Command '''0x110d''' is sent to WLAN device.
if (error) {
fprintf(stderr, "%s:%d: could not detach kernel driver (%d)\n",
__func__, __LINE__, error);
exit(1);
}


fprintf(stdout, "%s:%d: kernel driver dettached\n", __func__, __LINE__);
=====State 8=====
}


error = libusb_claim_interface(usb_dev_handle, USB_IFACE_NUMBER);
* Command '''0x1031''' is sent to WLAN device.
if (error) {
fprintf(stderr, "%s:%d: could not claim interface (%d)\n",
__func__, __LINE__, error);
exit(1);
}


error = libusb_control_transfer(usb_dev_handle, 0x40, 0x1, 0x9, 0x0,
=====State 9=====
usb_magic_data, sizeof(usb_magic_data), 0);
if (error < 0) {
fprintf(stderr, "%s:%d: could not do control transfer (%d)\n",
__func__, __LINE__, error);
exit(1);
}


fprintf(stdout, "%s:%d: number of bytes transferred (%d)\n", __func__, __LINE__, error);
* Command '''0x1041''' is sent to WLAN device.
* Command data sent to WLAN device contains MAC address.


error = libusb_control_transfer(usb_dev_handle, 0xc0, 0x0, 0x2, 0x0, buf, 2, 0);
=====State 10=====
if (error < 0) {
fprintf(stderr, "%s:%d: could not do control transfer (%d)\n",
__func__, __LINE__, error);
exit(1);
}


fprintf(stdout, "%s:%d: number of bytes received (%d)\n", __func__, __LINE__, error);
* Command '''0x29''' is sent to WLAN device.
* Sets antenna.


fprintf(stdout, "%s:%d: 0x%02x 0x%02x\n", __func__, __LINE__, buf[0], buf[1]);
=====State 11=====


usb_intr_transfer_ep5_in = libusb_alloc_transfer(0);
* Command '''0x110b''' is sent to WLAN device.
if (!usb_intr_transfer_ep5_in) {
fprintf(stderr, "%s:%d: could not allocate transfer\n", __func__, __LINE__);
exit(1);
}


memset(usb_intr_transfer_ep5_in_buf, 0, sizeof(usb_intr_transfer_ep5_in_buf));
=====State 12=====


libusb_fill_interrupt_transfer(usb_intr_transfer_ep5_in, usb_dev_handle, LIBUSB_ENDPOINT_IN | 0x5,
* Command '''0x1109''' is sent to WLAN device.
usb_intr_transfer_ep5_in_buf, sizeof(usb_intr_transfer_ep5_in_buf),
usb_intr_transfer_ep5_in_cb, NULL, 0);


error = libusb_submit_transfer(usb_intr_transfer_ep5_in);
=====State 13=====
if (error) {
 
fprintf(stderr, "%s:%d: could not submit transfer (%d)\n",
* Command '''0x207''' is sent to WLAN device.
__func__, __LINE__, error);
 
exit(1);
=====State 14=====
}


error = pthread_create(&tid, NULL, usb_wlan_cmd_thread, NULL);
* Command '''0x203''' is sent to WLAN device.
if (error) {
fprintf(stderr, "%s:%d: could not create WLAN command thread (%d)\n",
__func__, __LINE__, error);
exit(1);
}


while (!usb_wlan_cmd_thread_done) {
=====State 15=====
tv.tv_sec = 1;
tv.tv_usec = 0;


error = libusb_handle_events_timeout(usb_ctx, &tv);
* Command '''0x105f''' is sent to WLAN device.
if (error) {
* Command data sent to WLAN device contains MAC address, channel info and region code.
fprintf(stderr, "%s:%d: could not handle events (%d)\n",
__func__, __LINE__, error);
exit(1);
}
}


libusb_free_transfer(usb_intr_transfer_ep5_in);
=====State 16=====


error = libusb_release_interface(usb_dev_handle, USB_IFACE_NUMBER);
* LV2 waits for an event from WLAN device.
if (error)
fprintf(stderr, "%s:%d: could not release interface (%d)\n",
__func__, __LINE__, error);


libusb_close(usb_dev_handle);
=====State 17=====


libusb_exit(usb_ctx);
* LV2 accepts commands sent by LV2 syscall 726.


exit(0);
===Test Program===
}
</pre>


====Output====
* Here is a small program which executes a WLAN scan.
* I used libusb.


====Source Code====
<pre>
<pre>
glevand@debian-hdd:~/ps3_usb_wlan$ sudo ./ps3_usb_wlan
sudo: unable to resolve host debian-hdd
main:824: number of bytes transferred (32)
main:833: number of bytes received (2)
main:835: 0x20 0x31
usb_wlan_cmd_send:288: sending command (0x114f) data size (0x0518) command size (0x0524)
usb_intr_transfer_ep5_in_cb:233: === got interrupt transfer ===
usb_intr_transfer_ep5_in_cb:236: transfer status (0) length (36)
usb_handle_wlan_cmd_response:158: === got WLAN command response ===
usb_handle_wlan_cmd_response:191: command header:
usb_handle_wlan_cmd_response:192: command (0x1150)
usb_handle_wlan_cmd_response:199: tag (0xcafe)
usb_handle_wlan_cmd_response:201: status (0x0006)
usb_handle_wlan_cmd_response:205: ==> command status != 0x1
usb_handle_wlan_cmd_response:207: payload_size (0x0000)
usb_handle_wlan_cmd_response:210: command payload:
usb_wlan_cmd_send:288: sending command (0x1171) data size (0x0000) command size (0x000c)
usb_intr_transfer_ep5_in_cb:233: === got interrupt transfer ===
usb_intr_transfer_ep5_in_cb:236: transfer status (0) length (36)
usb_handle_wlan_cmd_response:158: === got WLAN command response ===
usb_handle_wlan_cmd_response:191: command header:
usb_handle_wlan_cmd_response:192: command (0x1172)
usb_handle_wlan_cmd_response:199: tag (0xcafe)
usb_handle_wlan_cmd_response:201: status (0x0001)
usb_handle_wlan_cmd_response:207: payload_size (0x0000)
usb_handle_wlan_cmd_response:210: command payload:
usb_intr_transfer_ep5_in_cb:233: === got interrupt transfer ===
usb_intr_transfer_ep5_in_cb:236: transfer status (0) length (68)
usb_handle_wlan_event:133: === got WLAN event ===
usb_handle_wlan_event:144: event_count (0x01)
00000000: 00 04 00 00 10 00 00 00 3c 22 02 00 00 00 00 00 |........<"......|
00000010: fc 90 02 c0 00 00 00 00 00 00 00 00 00 00 00 00 |................|
00000020: 13 00 00 20 00 00 00 00 00 00 00 00 00 00 00 00 |... ............|
00000030: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|
usb_wlan_cmd_send:288: sending command (0x116f) data size (0x0004) command size (0x0010)
usb_intr_transfer_ep5_in_cb:233: === got interrupt transfer ===
usb_intr_transfer_ep5_in_cb:236: transfer status (0) length (36)
usb_handle_wlan_cmd_response:158: === got WLAN command response ===
usb_handle_wlan_cmd_response:191: command header:
usb_handle_wlan_cmd_response:192: command (0x1170)
usb_handle_wlan_cmd_response:199: tag (0xcafe)
usb_handle_wlan_cmd_response:201: status (0x0001)
usb_handle_wlan_cmd_response:207: payload_size (0x0000)
usb_handle_wlan_cmd_response:210: command payload:
usb_wlan_cmd_send:288: sending command (0x115b) data size (0x005e) command size (0x006a)
usb_intr_transfer_ep5_in_cb:233: === got interrupt transfer ===
usb_intr_transfer_ep5_in_cb:236: transfer status (0) length (36)
usb_handle_wlan_cmd_response:158: === got WLAN command response ===
usb_handle_wlan_cmd_response:191: command header:
usb_handle_wlan_cmd_response:192: command (0x115c)
usb_handle_wlan_cmd_response:199: tag (0xcafe)
usb_handle_wlan_cmd_response:201: status (0x0001)
usb_handle_wlan_cmd_response:207: payload_size (0x0000)
usb_handle_wlan_cmd_response:210: command payload:
usb_wlan_cmd_send:288: sending command (0x1161) data size (0x0020) command size (0x002c)
usb_intr_transfer_ep5_in_cb:233: === got interrupt transfer ===
usb_intr_transfer_ep5_in_cb:236: transfer status (0) length (36)
usb_handle_wlan_cmd_response:158: === got WLAN command response ===
usb_handle_wlan_cmd_response:191: command header:
usb_handle_wlan_cmd_response:192: command (0x1162)
usb_handle_wlan_cmd_response:199: tag (0xcafe)
usb_handle_wlan_cmd_response:201: status (0x0001)
usb_handle_wlan_cmd_response:207: payload_size (0x0000)
usb_handle_wlan_cmd_response:210: command payload:
usb_wlan_cmd_send:288: sending command (0x110d) data size (0x0080) command size (0x008c)
usb_intr_transfer_ep5_in_cb:233: === got interrupt transfer ===
usb_intr_transfer_ep5_in_cb:236: transfer status (0) length (36)
usb_handle_wlan_cmd_response:158: === got WLAN command response ===
usb_handle_wlan_cmd_response:191: command header:
usb_handle_wlan_cmd_response:192: command (0x110e)
usb_handle_wlan_cmd_response:199: tag (0xcafe)
usb_handle_wlan_cmd_response:201: status (0x0001)
usb_handle_wlan_cmd_response:207: payload_size (0x0000)
usb_handle_wlan_cmd_response:210: command payload:
usb_wlan_cmd_send:288: sending command (0x1031) data size (0x0002) command size (0x000e)
usb_intr_transfer_ep5_in_cb:233: === got interrupt transfer ===
usb_intr_transfer_ep5_in_cb:236: transfer status (0) length (38)
usb_handle_wlan_cmd_response:158: === got WLAN command response ===
usb_handle_wlan_cmd_response:191: command header:
usb_handle_wlan_cmd_response:192: command (0x1032)
usb_handle_wlan_cmd_response:199: tag (0xcafe)
usb_handle_wlan_cmd_response:201: status (0x0001)
usb_handle_wlan_cmd_response:207: payload_size (0x0002)
usb_handle_wlan_cmd_response:210: command payload:
00000000: 00 00                                          |..              |
usb_wlan_cmd_send:288: sending command (0x1041) data size (0x0006) command size (0x0012)
usb_intr_transfer_ep5_in_cb:233: === got interrupt transfer ===
usb_intr_transfer_ep5_in_cb:236: transfer status (0) length (42)
usb_handle_wlan_cmd_response:158: === got WLAN command response ===
usb_handle_wlan_cmd_response:191: command header:
usb_handle_wlan_cmd_response:192: command (0x1042)
usb_handle_wlan_cmd_response:199: tag (0xcafe)
usb_handle_wlan_cmd_response:201: status (0x0001)
usb_handle_wlan_cmd_response:207: payload_size (0x0006)
usb_handle_wlan_cmd_response:210: command payload:
00000000: 00 11 22 33 44 55                              |.."3DU          |
usb_wlan_cmd_send:288: sending command (0x0029) data size (0x0002) command size (0x000e)
usb_intr_transfer_ep5_in_cb:233: === got interrupt transfer ===
usb_intr_transfer_ep5_in_cb:236: transfer status (0) length (38)
usb_handle_wlan_cmd_response:158: === got WLAN command response ===
usb_handle_wlan_cmd_response:191: command header:
usb_handle_wlan_cmd_response:192: command (0x002a)
usb_handle_wlan_cmd_response:199: tag (0xcafe)
usb_handle_wlan_cmd_response:201: status (0x0001)
usb_handle_wlan_cmd_response:207: payload_size (0x0002)
usb_handle_wlan_cmd_response:210: command payload:
00000000: 02 02                                          |..              |
usb_wlan_cmd_send:288: sending command (0x110b) data size (0x000c) command size (0x0018)
usb_intr_transfer_ep5_in_cb:233: === got interrupt transfer ===
usb_intr_transfer_ep5_in_cb:236: transfer status (0) length (48)
usb_handle_wlan_cmd_response:158: === got WLAN command response ===
usb_handle_wlan_cmd_response:191: command header:
usb_handle_wlan_cmd_response:192: command (0x110c)
usb_handle_wlan_cmd_response:199: tag (0xcafe)
usb_handle_wlan_cmd_response:201: status (0x0001)
usb_handle_wlan_cmd_response:207: payload_size (0x000c)
usb_handle_wlan_cmd_response:210: command payload:
00000000: 01 00 00 00 00 00 00 00 20 00 00 00            |........ ...    |
usb_wlan_cmd_send:288: sending command (0x1109) data size (0x0016) command size (0x0022)
usb_intr_transfer_ep5_in_cb:233: === got interrupt transfer ===
usb_intr_transfer_ep5_in_cb:236: transfer status (0) length (58)
usb_handle_wlan_cmd_response:158: === got WLAN command response ===
usb_handle_wlan_cmd_response:191: command header:
usb_handle_wlan_cmd_response:192: command (0x110a)
usb_handle_wlan_cmd_response:199: tag (0xcafe)
usb_handle_wlan_cmd_response:201: status (0x0001)
usb_handle_wlan_cmd_response:207: payload_size (0x0016)
usb_handle_wlan_cmd_response:210: command payload:
00000000: 01 00 00 00 15 27 12 00 06 00 00 00 09 00 01 00 |.....'..........|
00000010: ff ff ff ff ff ff                              |......          |
usb_wlan_cmd_send:288: sending command (0x0207) data size (0x0004) command size (0x0010)
usb_intr_transfer_ep5_in_cb:233: === got interrupt transfer ===
usb_intr_transfer_ep5_in_cb:236: transfer status (0) length (40)
usb_handle_wlan_cmd_response:158: === got WLAN command response ===
usb_handle_wlan_cmd_response:191: command header:
usb_handle_wlan_cmd_response:192: command (0x0208)
usb_handle_wlan_cmd_response:199: tag (0xcafe)
usb_handle_wlan_cmd_response:201: status (0x0001)
usb_handle_wlan_cmd_response:207: payload_size (0x0004)
usb_handle_wlan_cmd_response:210: command payload:
00000000: 01 00 00 00                                    |....            |
usb_wlan_cmd_send:288: sending command (0x0203) data size (0x0004) command size (0x0010)
usb_intr_transfer_ep5_in_cb:233: === got interrupt transfer ===
usb_intr_transfer_ep5_in_cb:236: transfer status (0) length (40)
usb_handle_wlan_cmd_response:158: === got WLAN command response ===
usb_handle_wlan_cmd_response:191: command header:
usb_handle_wlan_cmd_response:192: command (0x0204)
usb_handle_wlan_cmd_response:199: tag (0xcafe)
usb_handle_wlan_cmd_response:201: status (0x0001)
usb_handle_wlan_cmd_response:207: payload_size (0x0004)
usb_handle_wlan_cmd_response:210: command payload:
00000000: 04 00 00 00                                    |....            |
usb_wlan_cmd_send:288: sending command (0x105f) data size (0x000a) command size (0x0016)
usb_intr_transfer_ep5_in_cb:233: === got interrupt transfer ===
usb_intr_transfer_ep5_in_cb:236: transfer status (0) length (36)
usb_handle_wlan_cmd_response:158: === got WLAN command response ===
usb_handle_wlan_cmd_response:191: command header:
usb_handle_wlan_cmd_response:192: command (0x1060)
usb_handle_wlan_cmd_response:199: tag (0xcafe)
usb_handle_wlan_cmd_response:201: status (0x0001)
usb_handle_wlan_cmd_response:207: payload_size (0x0000)
usb_handle_wlan_cmd_response:210: command payload:
usb_intr_transfer_ep5_in_cb:233: === got interrupt transfer ===
usb_intr_transfer_ep5_in_cb:236: transfer status (0) length (68)
usb_handle_wlan_event:133: === got WLAN event ===
usb_handle_wlan_event:144: event_count (0x01)
00000000: 80 00 00 00 00 10 00 00 9e 2b 02 00 04 00 00 00 |.........+......|
00000010: fc 90 02 c0 01 00 00 00 00 00 00 00 00 00 00 00 |................|
00000020: 13 00 00 20 00 00 00 00 00 00 00 00 00 00 00 00 |... ............|
00000030: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|
usb_wlan_cmd_send:288: sending command (0x0099) data size (0x003e) command size (0x004a)
usb_intr_transfer_ep5_in_cb:233: === got interrupt transfer ===
usb_intr_transfer_ep5_in_cb:236: transfer status (0) length (98)
usb_handle_wlan_cmd_response:158: === got WLAN command response ===
usb_handle_wlan_cmd_response:191: command header:
usb_handle_wlan_cmd_response:192: command (0x009a)
usb_handle_wlan_cmd_response:199: tag (0xcafe)
usb_handle_wlan_cmd_response:201: status (0x0001)
usb_handle_wlan_cmd_response:207: payload_size (0x003e)
usb_handle_wlan_cmd_response:210: command payload:
00000000: 4a 55 50 49 54 45 52 2d 54 57 4f 2d 46 57 2d 32 |JUPITER-TWO-FW-2|
00000010: 30 2e 30 2e 31 32 2e 70 30 28 4a 61 6e 20 31 39 |0.0.12.p0(Jan 19|
00000020: 20 32 30 31 30 20 32 31 3a 32 30 3a 35 33 29 00 | 2010 21:20:53).|
00000030: 00 00 00 00 00 00 00 00 00 00 00 00 00 00      |..............  |
usb_wlan_cmd_send:288: sending command (0x1035) data size (0x0019) command size (0x0025)
usb_intr_transfer_ep5_in_cb:233: === got interrupt transfer ===
usb_intr_transfer_ep5_in_cb:236: transfer status (0) length (61)
usb_handle_wlan_cmd_response:158: === got WLAN command response ===
usb_handle_wlan_cmd_response:191: command header:
usb_handle_wlan_cmd_response:192: command (0x1036)
usb_handle_wlan_cmd_response:199: tag (0xcafe)
usb_handle_wlan_cmd_response:201: status (0x0001)
usb_handle_wlan_cmd_response:207: payload_size (0x0019)
usb_handle_wlan_cmd_response:210: command payload:
00000000: 00 01 64 00 00 00 00 00 00 00 03 0d 01 02 03 04 |..d.............|
00000010: 05 06 07 08 09 0a 0b 0c 0d                      |.........      |
usb_intr_transfer_ep5_in_cb:233: === got interrupt transfer ===
usb_intr_transfer_ep5_in_cb:236: transfer status (0) length (68)
usb_handle_wlan_event:133: === got WLAN event ===
usb_handle_wlan_event:144: event_count (0x01)
00000000: 80 00 00 00 04 00 00 00 96 2e 02 00 01 00 00 00 |................|
00000010: fc 90 02 c0 00 00 00 00 00 00 00 00 00 00 00 00 |................|
00000020: 13 00 00 20 00 00 00 00 00 00 00 00 00 00 00 00 |... ............|
00000030: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|
usb_wlan_cmd_send:288: sending command (0x1033) data size (0x05b0) command size (0x05bc)
usb_intr_transfer_ep5_in_cb:233: === got interrupt transfer ===
usb_intr_transfer_ep5_in_cb:236: transfer status (0) length (1403)
usb_handle_wlan_cmd_response:158: === got WLAN command response ===
usb_handle_wlan_cmd_response:191: command header:
usb_handle_wlan_cmd_response:192: command (0x1034)
usb_handle_wlan_cmd_response:199: tag (0xcafe)
usb_handle_wlan_cmd_response:201: status (0x0001)
usb_handle_wlan_cmd_response:207: payload_size (0x0557)
usb_handle_wlan_cmd_response:210: command payload:
...
Here is scan output (removed by me)
...
</pre>


===Associate with AP===
/*
 
* PS3 USB WLAN
* I got association with AP working.
*
* If WLAN device is connected to an AP then the green LED is on, when data is received then the LED blinks.
* Copyright (C) 2011 glevand ([email protected])
* '''Data reception works finally !!!'''
* All rights reserved.
 
*
====How to Associate with WPA AP====
  * This program is free software; you can redistribute it and/or modify it
* Set common configuration (command 0x1005)
* under the terms of the GNU General Public License as published
* Set WPA configuration (command 0x1019)
* by the Free Software Foundation; version 2 of the License.
* Set rate configuration (command 0x1ed)
*
* Associate (command 0x1001)
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/
 
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <ctype.h>
#include <stdint.h>
#include <unistd.h>
#include <pthread.h>
 
#include <libusb-1.0/libusb.h>
 
#define USB_VENDOR_ID 0x054c /* $ONY */
#define USB_PRODUCT_ID 0x036f
#define USB_IFACE_NUMBER 3
 
#define USB_INTR_TRANSFER_EP5_IN_BUF_SIZE 0x800
#define USB_INTR_TRANSFER_EP5_OUT_BUF_SIZE 0x800
 
struct wlan_cmd_pkt_hdr {
uint8_t unknown1;
uint8_t unknown2;
uint8_t unknown3;
uint8_t unknown4;
uint16_t unknown5;
uint8_t res1[2];
uint16_t tag;
uint8_t res2[14];
} __attribute__ ((packed));
 
struct wlan_cmd_hdr {
uint16_t command;
uint16_t tag;
uint16_t status;
uint16_t payload_size;
uint8_t res[4];
} __attribute__ ((packed));
 
struct wlan_event_pkt_hdr {
uint8_t unknown1;
uint8_t unknown2;
uint8_t unknown3;
uint8_t event_count;
} __attribute__ ((packed));
 
static libusb_context *usb_ctx;
static libusb_device_handle *usb_dev_handle;
 
static struct libusb_transfer *usb_intr_transfer_ep5_in;
static unsigned char usb_intr_transfer_ep5_in_buf[USB_INTR_TRANSFER_EP5_IN_BUF_SIZE];
 
static unsigned char usb_intr_transfer_ep5_out_buf[USB_INTR_TRANSFER_EP5_OUT_BUF_SIZE];
 
static pthread_mutex_t usb_wlan_cmd_mutex;
static pthread_cond_t usb_wlan_cmd_cond;
static int volatile usb_wlan_cmd_busy;
static uint16_t usb_wlan_cmd;
static void *usb_wlan_cmd_data;
 
static int volatile usb_wlan_cmd_thread_done;
 
/*
* WLAN won't work without this magic !!!
*/
static unsigned char usb_magic_data[] = {
0x76, 0x4e, 0x4b, 0x07, 0x24, 0x42, 0x53, 0xfb, 0x5a, 0xc7, 0xcc, 0x1d, 0xae, 0x00, 0xc6, 0xd8,
0x14, 0x40, 0x61, 0x8b, 0x13, 0x17, 0x4d, 0x7c, 0x3b, 0xb6, 0x90, 0xb8, 0x6e, 0x8b, 0xbb, 0x1d,
};
 
static unsigned char my_mac_addr[] = {
0x00, 0x11, 0x22, 0x33, 0x44, 0x55,
};
 
/*
* hexdump
*/
static void hexdump(const unsigned char *data, unsigned int data_size)
{
int i, j;
 
for (i = 0; i < data_size; i += 16) {
fprintf(stdout, "%08x:", i);
 
for (j = 0; j < 16; j++) {
if (i + j < data_size) {
fprintf(stdout, " %02x", data[i + j]);
} else {
fprintf(stdout, "  ");
}
}
 
fprintf(stdout, " |");
 
for (j = 0; j < 16; j++) {
if (i + j < data_size) {
if (isprint(data[i + j]))
fprintf(stdout, "%c", data[i + j]);
else
fprintf(stdout, ".");
} else {
fprintf(stdout, " ");
}
}
 
fprintf(stdout, "|\n");
}
}
 
/*
* usb_handle_wlan_event
*/
static void usb_handle_wlan_event(struct wlan_event_pkt_hdr *wlan_event_pkt_hdr)
{
fprintf(stdout, "%s:%d: === got WLAN event ===\n", __func__, __LINE__);
 
/*
fprintf(stdout, "%s:%d: event packet header:\n", __func__, __LINE__);
fprintf(stdout, "%s:%d: unknown1 (0x%02x)\n", __func__, __LINE__,
wlan_event_pkt_hdr->unknown1);
fprintf(stdout, "%s:%d: unknown2 (0x%02x)\n", __func__, __LINE__,
wlan_event_pkt_hdr->unknown2);
fprintf(stdout, "%s:%d: unknown3 (0x%02x)\n", __func__, __LINE__,
wlan_event_pkt_hdr->unknown3);
*/
fprintf(stdout, "%s:%d: event_count (0x%02x)\n", __func__, __LINE__,
wlan_event_pkt_hdr->event_count);
 
hexdump((unsigned char *) (wlan_event_pkt_hdr + 1), wlan_event_pkt_hdr->event_count * 64);
}
 
/*
* usb_handle_wlan_cmd_response
*/
static void usb_handle_wlan_cmd_response(struct wlan_cmd_pkt_hdr *wlan_cmd_pkt_hdr)
{
struct wlan_cmd_hdr *wlan_cmd_hdr;
uint8_t *wlan_cmd_payload;
 
fprintf(stdout, "%s:%d: === got WLAN command response ===\n", __func__, __LINE__);
 
wlan_cmd_hdr = (struct wlan_cmd_hdr *) (wlan_cmd_pkt_hdr + 1);
wlan_cmd_payload = (uint8_t *) (wlan_cmd_hdr + 1);
 
/* convert all header fields to big-endian byte order !!! */
 
wlan_cmd_pkt_hdr->unknown5 = le16toh(wlan_cmd_pkt_hdr->unknown5);
wlan_cmd_pkt_hdr->tag = le16toh(wlan_cmd_pkt_hdr->tag); /* returned from request */
 
wlan_cmd_hdr->command = le16toh(wlan_cmd_hdr->command); /* request command + 1 */
wlan_cmd_hdr->tag = le16toh(wlan_cmd_hdr->tag); /* returned from request */
wlan_cmd_hdr->status = le16toh(wlan_cmd_hdr->status); /* 1 - success
  2 - invalid parameters ???
  3 - invalid command ??? */
wlan_cmd_hdr->payload_size = le16toh(wlan_cmd_hdr->payload_size); /* length of data that follows the header */
 
/*
fprintf(stdout, "%s:%d: command packet header:\n", __func__, __LINE__);
fprintf(stdout, "%s:%d: unknown1 (0x%02x)\n", __func__, __LINE__,
wlan_cmd_pkt_hdr->unknown1);
fprintf(stdout, "%s:%d: unknown2 (0x%02x)\n", __func__, __LINE__,
wlan_cmd_pkt_hdr->unknown2);
fprintf(stdout, "%s:%d: unknown3 (0x%02x)\n", __func__, __LINE__,
wlan_cmd_pkt_hdr->unknown3);
fprintf(stdout, "%s:%d: unknown4 (0x%02x)\n", __func__, __LINE__,
wlan_cmd_pkt_hdr->unknown4);
fprintf(stdout, "%s:%d: unknown5 (0x%04x)\n", __func__, __LINE__,
wlan_cmd_pkt_hdr->unknown5);
fprintf(stdout, "%s:%d: tag (0x%04x)\n", __func__, __LINE__,
wlan_cmd_pkt_hdr->tag);
*/


===Packet Reception===
fprintf(stdout, "%s:%d: command header:\n", __func__, __LINE__);
fprintf(stdout, "%s:%d: command (0x%04x)\n", __func__, __LINE__,
wlan_cmd_hdr->command);


* EP6 IN and EP7 IN endpoints are used for packet reception
if ((usb_wlan_cmd + 1) != wlan_cmd_hdr->command)
* LV2 sends bulk transfers to both endpoints
fprintf(stdout, "%s:%d: ==> command does not match, got (0x%04x) expected (0x%04x)\n",
* '''4''' bulk transfers are sent simultaneously for each enpoint
__func__, __LINE__, wlan_cmd_hdr->command, usb_wlan_cmd + 1);
* Every bulk transfer is of size '''0x620'''
* '''Make sure you set multicast address filter properly or else you won't receive broadcast packets !!!'''
* Bulk transfers returned by the host controller which do not contain any data have size of '''0x10''' bytes else transfers contain valid Ethernet frame. All 802.11 related data is stripped by the WLAN Gelic device.
* '''Make sure you set right MAC address with command 0x115b else device won't be able to receive packets destined to its own MAC address !!!'''


====Test with libusb====
fprintf(stdout, "%s:%d: tag (0x%04x)\n", __func__, __LINE__,
wlan_cmd_hdr->tag);
fprintf(stdout, "%s:%d: status (0x%04x)\n", __func__, __LINE__,
wlan_cmd_hdr->status);


<pre>
if (wlan_cmd_hdr->status != 0x1)
usb_bulk_transfer_ep6_in_cb:318: === got data transfer ===
fprintf(stdout, "%s:%d: ==> command status != 0x1\n", __func__, __LINE__);
usb_bulk_transfer_ep6_in_cb:321: transfer status (0) length (98)
00000000: ff ff ff ff ff ff ?? ?? ?? ?? ?? ?? 08 00 45 00 |..............E.|
00000010: 00 54 00 00 40 00 40 01 b5 fe c0 a8 01 5b c0 a8 |.T..@.@......[..|
00000020: 01 ff 08 00 9c 69 0d 45 00 e2 4e 5d 34 26 00 07 |.....i.E..N]4&..|
00000030: df e1 08 09 0a 0b 0c 0d 0e 0f 10 11 12 13 14 15 |................|
00000040: 16 17 18 19 1a 1b 1c 1d 1e 1f 20 21 22 23 24 25 |.......... !"#$%|
00000050: 26 27 28 29 2a 2b 2c 2d 2e 2f 30 31 32 33 34 35 |&'()*+,-./012345|
00000060: 36 37                                          |67              |
usb_bulk_transfer_ep6_in_cb:318: === got data transfer ===
usb_bulk_transfer_ep6_in_cb:321: transfer status (0) length (16)
00000000: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 01 00 |................|
usb_bulk_transfer_ep6_in_cb:318: === got data transfer ===
usb_bulk_transfer_ep6_in_cb:321: transfer status (0) length (16)
00000000: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 02 00 |................|
usb_bulk_transfer_ep6_in_cb:318: === got data transfer ===
usb_bulk_transfer_ep6_in_cb:321: transfer status (0) length (16)
00000000: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 03 00 |................|
</pre>


====Multicast Address Filter====
fprintf(stdout, "%s:%d: payload_size (0x%04x)\n", __func__, __LINE__,
wlan_cmd_hdr->payload_size);


* WLAN Gelic device supports hardware multicast address filtering
fprintf(stdout, "%s:%d: command payload:\n", __func__, __LINE__);
* Multicast address filtering is implemented with MAC address hashing and filter bitmap
* Filter bitmap is of size '''4 * 8''' bytes
* Multicast address filter is set with command '''0x1161'''


=====MAC Address Hash Function=====
hexdump(wlan_cmd_payload, wlan_cmd_hdr->payload_size);


* Used by LV2
memcpy(usb_wlan_cmd_data, wlan_cmd_payload, wlan_cmd_hdr->payload_size);


<pre>
pthread_mutex_lock(&usb_wlan_cmd_mutex);
unsigned char hash(unsigned char *data, unsigned int size)
{
        unsigned int hash;
        int i, j;


        /*XXX: reverse data bits */
usb_wlan_cmd_busy = 0;


        hash = 0xffffffff;
pthread_cond_signal(&usb_wlan_cmd_cond);


        for (i = 0; i < size; i++) {
pthread_mutex_unlock(&usb_wlan_cmd_mutex);
                hash = (((unsigned int) data[i]) << 24) ^ hash;
 
                for (j = 0; j < 8; j++) {
                        if (((int) hash) >= 0) {
                                hash = hash << 1;
                        } else {
                                hash = (hash << 1) ^ 0x04c10000;
                                hash = hash ^ 0x00001db7;
                        }
                }
        }
 
        hash = ((hash >> 24) & 0xf8) | (hash & 0x7);
 
        return hash & 0xff;
}
}


h = hash(mac_addr, 6);
/*
v = 1 << (h & 0x1f);    /* word value in filter */
* usb_intr_transfer_ep5_in_cb
p = h >> 5;            /* word position in filter */
*/
static void usb_intr_transfer_ep5_in_cb(struct libusb_transfer *transfer)
{
struct wlan_cmd_pkt_hdr *wlan_cmd_pkt_hdr;
int error;


fprintf(stdout, "%s:%d: === got interrupt transfer ===\n", __func__, __LINE__);


For broadcast address:
fprintf(stdout, "%s:%d: transfer status (%d) length (%d)\n",
------------------------
__func__, __LINE__, transfer->status, transfer->actual_length);


v = 0x20000000
wlan_cmd_pkt_hdr = (struct wlan_cmd_pkt_hdr *) transfer->buffer;
p = 7


That's why 0x20 is used with command 0x1161 !!! Without it the device won't deliver broadcast traffic.
if (wlan_cmd_pkt_hdr->unknown3 == 0x6)
Learned it the hard way, after 2 days of trying to get packet reception working :)
usb_handle_wlan_cmd_response(wlan_cmd_pkt_hdr);
</pre>
else if (wlan_cmd_pkt_hdr->unknown3 == 0x8)
usb_handle_wlan_event((struct wlan_event_pkt_hdr *) transfer->buffer);
else
fprintf(stdout, "%s:%d: got unknown packet (0x%02x)\n",
__func__, __LINE__, wlan_cmd_pkt_hdr->unknown3);


===Packet Transmission===
memset(usb_intr_transfer_ep5_in_buf, 0, sizeof(usb_intr_transfer_ep5_in_buf));


* Tx packets are sent to EP6 OUT
libusb_fill_interrupt_transfer(usb_intr_transfer_ep5_in, usb_dev_handle, LIBUSB_ENDPOINT_IN | 0x5,
* Tx packets are normal Ethernet frames, they don't contain any WLAN data or other headers
usb_intr_transfer_ep5_in_buf, sizeof(usb_intr_transfer_ep5_in_buf),
usb_intr_transfer_ep5_in_cb, NULL, 0);


===AP Mode===
error = libusb_submit_transfer(usb_intr_transfer_ep5_in);
if (error) {
fprintf(stderr, "%s:%d: could not submit transfer (%d)\n",
__func__, __LINE__, error);
exit(1);
}
}


* I got AP mode working with security disabled for now
/*
* usb_intr_transfer_ep5_out_cb
*/
static void usb_intr_transfer_ep5_out_cb(struct libusb_transfer *transfer)
{
/*
fprintf(stdout, "%s:%d: sent interrupt transfer\n", __func__, __LINE__);


====AP Mode with Security Disabled====
fprintf(stdout, "%s:%d: transfer status (%d)\n", __func__, __LINE__, transfer->status);
*/


* Set AP SSID (command 0x5)
libusb_free_transfer(transfer);
* Set channel (command 0x11)
}
* Set AP opmode (command 0xb9)
* Configure rate control (command 0x1ed)
* Set AP WEP Configuration (command 0x5b, all 0s)
* Command 0x61 (param 0x0)
* Command 0xc5 (param 0x0)
* Command 0x1 (param 0x1)
* Command 0x1dd (param 0x2)
* Now green LED should be on


===ps3-jupiter Linux Drivers===
/*
* usb_wlan_cmd_send
*/
static int usb_wlan_cmd_send(uint16_t command, const uint8_t *data, unsigned int data_size)
{
struct wlan_cmd_pkt_hdr *wlan_cmd_pkt_hdr;
struct wlan_cmd_hdr *wlan_cmd_hdr;
uint8_t *wlan_cmd_payload;
struct libusb_transfer *transfer;
int error;


* ps3_jupiter.ko is the common part of STA and AP mode. It implements a command interface to WLAN Gelic device and disptaches events to STA and AP drivers.
fprintf(stdout, "%s:%d: sending command (0x%04x) data size (0x%04x) command size (0x%04x)\n",
* ps3_jupiter_sta.ko is a STA mode implementation.
__func__, __LINE__, command, data_size, data_size + sizeof(struct wlan_cmd_hdr));
* ps3_jupiter_ap.ko is a AP mode implementation.
* Simple scanning works already in STA mode (try it out with '''iwlist scan''')
* Packet reception works
* Packet transmission works
* '''WPA/WPA2''' fully working and usable with '''wpa_supplicant'''


transfer = libusb_alloc_transfer(0);
if (!transfer) {
fprintf(stderr, "%s:%d: could not allocate transfer\n", __func__, __LINE__);
error = -1;
goto fail;
}


'''Finally, after several weeks of hard programming and reversing, the WLAN driver ps3_jupiter_sta achieved the milestone where i can use it with WPA2 :) I actually use it currently with WPA2 on my PS3 slim. It works damn !!! Try it out and report bugs and problems to me.'''
wlan_cmd_pkt_hdr = (struct wlan_cmd_pkt_hdr *) usb_intr_transfer_ep5_out_buf;
wlan_cmd_hdr = (struct wlan_cmd_hdr *) (wlan_cmd_pkt_hdr + 1);
wlan_cmd_payload = (uint8_t *) (wlan_cmd_hdr + 1);


====TODO====
wlan_cmd_pkt_hdr->unknown1 = 0x1;
wlan_cmd_pkt_hdr->unknown2 = 0x1;
wlan_cmd_pkt_hdr->unknown3 = 0x6;
wlan_cmd_pkt_hdr->unknown4 = 0x0;
wlan_cmd_pkt_hdr->unknown5 = 0x1;
wlan_cmd_pkt_hdr->tag = 0xf00d; /* returned in response */


* Implement association in STA mode (finished)
wlan_cmd_hdr->command = command;
* Implement packet reception and transmission in STA mode (finished)
wlan_cmd_hdr->tag = 0xcafe; /* returned in response */
* Implement WEP support
wlan_cmd_hdr->status = 0xa;
* Implement AP mode
wlan_cmd_hdr->payload_size = data_size;
* Find out if Jupiter supports Monitor mode and if yes how to enable it
* Implement EURUS driver for PHATs (has many advantages over the old OtherOS approach, e.g. AP mode)
* Port to FreeBSD


==LV2 Network Stack==
memcpy(wlan_cmd_payload, data, data_size);


* LV2 uses BSD network stack, e.g. '''struct mbuf'''
usb_wlan_cmd = command;
* It's almost identical to FreeBSD network stack.
usb_wlan_cmd_data = (void *) data;


===Network Device===
libusb_fill_interrupt_transfer(transfer, usb_dev_handle, LIBUSB_ENDPOINT_OUT | 0x5,
usb_intr_transfer_ep5_out_buf,
sizeof(struct wlan_cmd_pkt_hdr) + sizeof(struct wlan_cmd_hdr) + wlan_cmd_hdr->payload_size,
usb_intr_transfer_ep5_out_cb, NULL, 0);


====IOCTLs====
/* convert all header fields to little-endian byte order !!! */


=====Set Multicast Address Filter (0x81012000)=====
wlan_cmd_pkt_hdr->unknown5 = htole16(wlan_cmd_pkt_hdr->unknown5);
wlan_cmd_pkt_hdr->tag = htole16(wlan_cmd_pkt_hdr->tag);


* Sets multicast address filter
wlan_cmd_hdr->command = htole16(wlan_cmd_hdr->command);
* Uses LV1 calls '''lv1_net_remove_multicast_address''' and '''lv1_net_add_multicast_address''' for Ethernet Gelic device
wlan_cmd_hdr->tag = htole16(wlan_cmd_hdr->tag);
* Uses Eurus commands '''0x1161''', '''0x1163''' and '''0x1165''' for WLAN Gelic device
wlan_cmd_hdr->status = htole16(wlan_cmd_hdr->status);
wlan_cmd_hdr->payload_size = htole16(wlan_cmd_hdr->payload_size);


=====Unknown (0x8101200E)=====
error = libusb_submit_transfer(transfer);
if (error) {
fprintf(stderr, "%s:%d: could not submit transfer (%d)\n",
__func__, __LINE__, error);
goto fail_free_transfer;
}


* Uses LV1 call '''lv1_net_control(0x8000000000000001)'''
pthread_mutex_lock(&usb_wlan_cmd_mutex);


=====Unknown (0x81040000)=====
usb_wlan_cmd_busy = 1;


* Uses LV1 call '''lv1_net_control(0x8, [0x0, 0x1 or 0x2])''' for Ethernet Gelic device
while (usb_wlan_cmd_busy)
* Uses Eurus commands '''0x116F''', '''0x115D''' and '''0x115B''' for WLAN Gelic device
pthread_cond_wait(&usb_wlan_cmd_cond, &usb_wlan_cmd_mutex);


=====Enable/Disable WOL Magic Packet (0x81080000)=====
pthread_mutex_unlock(&usb_wlan_cmd_mutex);


* Enables/Disables WOL Magic Packet
return 0;
* Uses LV1 call '''lv1_net_control(0x5 /* GELIC_LV1_SET_WOL */, 0x1 /* GELIC_LV1_WOL_MAGIC_PACKET */)''' for Ethernet Gelic device
* Uses Eurus commands '''0x1139''' and '''0x1155''' for WLAN Gelic device


=====Unknown (0x81080001)=====
fail_free_transfer:


* Uses LV1 call '''lv1_net_control(0x5 /* GELIC_LV1_SET_WOL */, 0x2)''' for Ethernet Gelic device
libusb_free_transfer(transfer);
* Uses Eurus commands '''0x113B''' and '''0x1157''' for WLAN Gelic device


=====Unknown (0x81080002)=====
fail:


* Uses LV1 call '''lv1_net_control(0x5 /* GELIC_LV1_SET_WOL */, 0x3)''' for Ethernet Gelic device
return error;
* Uses Eurus commands '''0x113D''' and '''0x1159''' for WLAN Gelic device
}


=====Unknown (0x81080003)=====
/*
* usb_wlan_cmd_start_scan
*/
static int usb_wlan_cmd_start_scan(void)
{
unsigned char data[256], *ptr;
unsigned int data_size;


* Uses LV1 call '''lv1_net_control(0x5 /* GELIC_LV1_SET_WOL */, 0x4)''' for Ethernet Gelic device
memset(data, 0, sizeof(data));
* Uses Eurus command '''0x1161''' for WLAN Gelic device


=====Unknown (0x81080005)=====
ptr = data;
*ptr++ = 0x0;
*ptr++ = 0x1;
*ptr++ = 0x64;
*ptr++ = 0x0;


* Uses LV1 call '''lv1_net_control(0x5 /* GELIC_LV1_SET_WOL */, 0x6 /* GELIC_LV1_WOL_ADD_MATCH_ADDR */)''' for Ethernet Gelic device
ptr = data + 0xa;
* Uses Eurus commands '''0x116D''' and '''0x1167''' for WLAN Gelic device
*ptr++ = 0x3;


===Network Packet===
*ptr++ = 13; /* number of channels */
*ptr++ = 1; /* channels */
*ptr++ = 2;
*ptr++ = 3;
*ptr++ = 4;
*ptr++ = 5;
*ptr++ = 6;
*ptr++ = 7;
*ptr++ = 8;
*ptr++ = 9;
*ptr++ = 10;
*ptr++ = 11;
*ptr++ = 12;
*ptr++ = 13;


* LV2 network packet is represented by '''struct mbuf'''
data_size = ptr - data;


=RSX=
return usb_wlan_cmd_send(0x1035, data, data_size);
Crossreference: [http://wiki.gitbrew.org/index.php/PS3:HvReverseEngineering#RSX gitbrew.org::RSX] <br />
}


==HV Calls==
/*
* usb_wlan_cmd_get_scan_results
*/
static int usb_wlan_cmd_get_scan_results(void)
{
unsigned char data[1456];
unsigned int data_size;


===lv1_gpu_memory_allocate===
memset(data, 0, sizeof(data));


* LV1 supports 16 memory handles simultaneously.
data_size = sizeof(data);
* LV1 uses a bitmap to manage GPU VRAM.
* The bitmap is located in LV1 memory, 4 double words.
* Each bit corresponds to 1MB VRAM, 256bit = 256MB VRAM.
* 2MB at the top of VRAM are preallocated as you can see below.


<pre>
return usb_wlan_cmd_send(0x1033, data, data_size);
<memory handle> = 0x5a5a5a5a xor <memory handle index>
}
</pre>


====Memory Context Object====
/*
* usb_wlan_cmd_0x99
*/
static int usb_wlan_cmd_0x99(void)
{
unsigned char data[0x3e];
unsigned int data_size;


offset 0x8 - memory handle (4 bytes)
memset(data, 0, sizeof(data));


offset 0x10 - VRAM LPAR start address (8 bytes)
data_size = sizeof(data);


offset 0x18 - VRAM LPAR end address (8 bytes)
return usb_wlan_cmd_send(0x99, data, data_size);
}


====Test====
/*
* usb_wlan_init
*/
static int usb_wlan_init(void)
{
unsigned char data[1456], *ptr;
unsigned int data_size;
int error;


* The offset of bitmap could be different on your system because it's allocated dynamically.
/* state 0x1 */
* '''First 9MB of VRAM were allocated by ps3fb Linux driver.'''


Before allocating VRAM:
memset(data, 0, sizeof(data));
<pre>
glevand@debian-hdd:~$ sudo dd if=/dev/ps3ram bs=1 count=$((0x20)) skip=$((0x1f85b0)) | hexdump -C
00000000  00 00 00 00 00 00 01 ff  00 00 00 00 00 00 00 00  |.......ÿ........|
00000010  00 00 00 00 00 00 00 00  c0 00 00 00 00 00 00 00  |........À.......|
</pre>


After allocating 32 MB VRAM:
data_size = 0x518;
<pre>
glevand@debian-hdd:~$ sudo dd if=/dev/ps3ram bs=1 count=$((0x20)) skip=$((0x1f85b0)) | hexdump -C
00000000  00 00 01 ff ff ff ff ff  00 00 00 00 00 00 00 00  |...ÿÿÿÿÿ........|
00000010  00 00 00 00 00 00 00 00  c0 00 00 00 00 00 00 00  |........À.......|
</pre>


===lv1_gpu_context_allocate===
error = usb_wlan_cmd_send(0x114f, data, data_size);
if (error) {
fprintf(stderr, "%s:%d: could not send command 0x114f (%d)\n",
__func__, __LINE__, error);
return error;
}


* Register %r4 is flags.
sleep(2);
* '''Found the place in LV1 where LV1 sets IO page size for GART memory mapping. We could patch it and set to 4KB. That would make a lot of things easier for RSX developers on Linux.'''
* 1MB pages make RSX driver for Linux hard to implement because allocating 1Mb contiguous memory chunk on Linux is very very hard especially on a system with only 256MB and which was running for some time.


* LV1 supports 16 contexts simultaneously.
/* state 0x2 */
* LV1 has an array of context pointers.
* Each context has an index and a handle. The handle is derived from the index of the context.


<pre>
memset(data, 0, sizeof(data));
<context handle> = 0x55555555 xor <context index>
</pre>


* Thats why first created context will have handle 0x55555555.
data_size = 0;


====Context Object====
error = usb_wlan_cmd_send(0x1171, data, data_size);
 
if (error) {
offset 0x8 - handle (4 bytes)
fprintf(stderr, "%s:%d: could not send command 0x1171 (%d)\n",
__func__, __LINE__, error);
return error;
}
 
sleep(2);


offset 0x48 - IO page size, valid range is 4kB, 64KB and 1MB (8 bytes)
/* wait for a WLAN event */


====Flags====
/* state 0x4 */


'''0x2 - tells LV1 to use 64KB pages for GART memory mapping else LV1 uses 1MB pages'''
memset(data, 0, sizeof(data));


===lv1_gpu_context_iomap===
ptr = data;


* Internally uses lv1_put_iopte function
*ptr++ = 0x1;
* IO page size is the one set during lv1_gpu_context_allocate
* IO address space id is 0x0. IO id is 0x1.


===lv1_gpu_context_attribute===
data_size = 0x4;


====Attribute 0x1====
error = usb_wlan_cmd_send(0x116f, data, data_size);
if (error) {
fprintf(stderr, "%s:%d: could not send command 0x116f (%d)\n",
__func__, __LINE__, error);
return error;
}


=====FIFO Command Buffer Setup=====
sleep(2);


<pre>
/* state 0x5 */
lv1_gpu_context_attribute(context handle, 0x1, PUT offset, GET offset, 0x0, 0x0)
</pre>


====Attribute 0x101====
memset(data, 0, sizeof(data));


=====Set Flip Mode=====
ptr = data;


<pre>
*ptr++ = 0x1;
lv1_gpu_attribute(0x2, 0x1 /* head */, 0x0, 0x0)
lv1_gpu_context_attribute(context handle, 0x101, 0x1 /* head */, sync mode, 0x0, 0x0)
</pre>


====Attribute 0x104====
ptr = data + 0x4;
memcpy(ptr, my_mac_addr, sizeof(my_mac_addr));


=====Set Display Buffer=====
data_size = 0x5e;


<pre>
error = usb_wlan_cmd_send(0x115b, data, data_size);
lv1_gpu_context_attribute(context handle, 0x104, id, width << 32 | height, pitch << 32 | offset, 0x0)
if (error) {
</pre>
fprintf(stderr, "%s:%d: could not send command 0x115b (%d)\n",
__func__, __LINE__, error);
return error;
}


====Attribute 0x10a====
sleep(2);


=====Get Flip Status=====
/* state 0x6 */


* Reads a value at offset '''0x10C0 + 0x1 * 0x40''' in lpar_reports memory.
memset(data, 0, sizeof(data));


=====Reset Flip Status=====
ptr = data + 0x1c;


<pre>
*ptr++ = 0x20;
lv1_gpu_context_attribute(context handle, 0x10a, 0x1 /* id */, 0x7fffffff /* mask */, 0x0 /* value */, 0x0)
</pre>


* The LV1 call '''lv1_gpu_context_attribute(0x10a)''' accesses LPAR memory returned in '''lpar_reports''' by LV1 call '''lv1_gpu_context_allocate'''.
data_size = 0x20;
* Offset into lpar_reports is '''0x10C0 + id * 0x40 = 0x10C0 + 0x1 * 0x40'''.
* Why not access lpar_reports memory directly and use LV1 call instead ???


====Attribute 0x10b====
error = usb_wlan_cmd_send(0x1161, data, data_size);
if (error) {
fprintf(stderr, "%s:%d: could not send command 0x1161 (%d)\n",
__func__, __LINE__, error);
return error;
}


* '''This attribute is NOT available on 3.15 LV1 e.g. but on 3.41 it's implemented.'''
sleep(2);


=====Set Cursor Position=====
memset(data, 0, sizeof(data));


<pre>
ptr = data + 0xc;
lv1_gpu_context_attribute(context handle, 0x10b, 0x1, 0x3, x, y)
memset(ptr, 0xff, 7 * 4);
</pre>


=====Set Cursor Image Offset=====
data_size = 0x80;


<pre>
error = usb_wlan_cmd_send(0x110d, data, data_size);
lv1_gpu_context_attribute(context handle, 0x10b, 0x1, 0x2, offset, 0x0)
if (error) {
</pre>
fprintf(stderr, "%s:%d: could not send command 0x110d (%d)\n",
__func__, __LINE__, error);
return error;
}


====Attribute 0x10c====
sleep(2);


* '''This attribute is NOT available on 3.15 LV1 e.g. but on 3.41 it's implemented.'''
memset(data, 0, sizeof(data));


=====Cursor Function 1=====
data_size = 0x2;


<pre>
error = usb_wlan_cmd_send(0x1031, data, data_size);
lv1_gpu_context_attribute(context handle, 0x10c, 0x1, 0x1, 0x0, 0x0)
if (error) {
</pre>
fprintf(stderr, "%s:%d: could not send command 0x1031 (%d)\n",
__func__, __LINE__, error);
return error;
}


=====Cursor Function 2=====
sleep(2);


<pre>
memset(data, 0, sizeof(data));
lv1_gpu_context_attribute(context handle, 0x10c, 0x1, 0x2, 0x0, 0x0)
</pre>


====Attribute 0x10d====
ptr = data;
memcpy(ptr, my_mac_addr, sizeof(my_mac_addr));


* '''This attribute is NOT available on 3.15 LV1 e.g. but on 3.41 it's implemented.'''
data_size = 0x6;


=====Cursor Function 1=====
error = usb_wlan_cmd_send(0x1041, data, data_size);
 
if (error) {
<pre>
fprintf(stderr, "%s:%d: could not send command 0x1041 (%d)\n",
lv1_gpu_context_attribute(context handle, 0x10d, 0x1, 0x1, 0x0, 0x0)
__func__, __LINE__, error);
</pre>
return error;
}
 
sleep(2);


====Attribute 0x300====
/* state 0xa */


=====Set Tile=====
memset(data, 0, sizeof(data));


=====Set Invalidate Tile=====
ptr = data;


=====Bind Tile=====
*ptr++ = 0x2;
*ptr++ = 0x2;


=====Unbind Tile=====
data_size = 0x2;


====Attribute 0x301====
error = usb_wlan_cmd_send(0x29, data, data_size);
if (error) {
fprintf(stderr, "%s:%d: could not send command 0x29 (%d)\n",
__func__, __LINE__, error);
return error;
}


=====Set Zcull=====
sleep(2);


=====Bind Zcull=====
memset(data, 0, sizeof(data));


=====Unbind Zcull=====
ptr = data;


====Attribute 0x601====
*ptr++ = 0x1;


* Copies data from GART memory to VRAM.
ptr = data + 8;
* LV1 uses internally the FIFO command buffer passed by ps3fb driver with lv1_gpu_context_iomap.


FIFO commands:
*ptr++ = 0x20;
<pre>
0x0004C184
0xFEED0001


0x0004C198
data_size = 0xc;
0x313371C3


0x00046300
error = usb_wlan_cmd_send(0x110b, data, data_size);
0x0000000A
if (error) {
fprintf(stderr, "%s:%d: could not send command 0x110b (%d)\n",
__func__, __LINE__, error);
return error;
}


for ()
sleep(2);
{
    for ()
    {
        0x0004630C
        <param>


        0x00046304
memset(data, 0, sizeof(data));
        <param>


        0x0024C2FC
ptr = data;
        0x00000001
        0x00000003
        0x00000003
        <param1>
        <param2>
        <param3>
        <param4>
        0x00010000
        0x00010000


        0x0001C400
*ptr++ = 0x1;
        <param1>
        <param2>
        <param3>
        0x00000000
    }
}


0x00040110
ptr = data + 0x4;
0x00000000
</pre>


==FIFO Command Buffer==
*ptr++ = 0x15;
*ptr++ = 0x27;


===FIFO Control Registers===
*ptr++ = 0x12;
*ptr++ = 0x0;


* LV1 call '''lv1_gpu_context_allocate''' returns LPAR address of FIFO control registers.
*ptr++ = 0x6;
* You have to map it into Linux address space before you can access FIFO control registers.
*ptr++ = 0x0;
* Value of PUT and GET registers are NOT expressed in Linux address space but in RSX address space. You have to convert it to RSX address space.
* GET register is read-only and is modified by RSX while it's processing FIFO commands.


===Kicking FIFO Command Buffer===
ptr = data + 0xc;


* As long as values of GET and PUT FIFO control registers are equal, RSX doesn't process commands from the FIFO command buffer.
*ptr++ = 0x9;
* When the value of PUT register is not equal to the value of GET register, RSX starts processing commands in the FIFO command buffer.
*ptr++ = 0x0;
* To execute FIFO commands, place them in the FIFO command buffer and change the value of PUT register.
*ptr++ = 0x1;


===FIFO Setup Programs of emer_init.self===
ptr = data + 0x10;


* [[PS3:HvReverseEngineering:emer_init.self:Program 1]]
*ptr++ = 0xff;
* [[PS3:HvReverseEngineering:emer_init.self:Program 2]]
*ptr++ = 0xff;
* [[PS3:HvReverseEngineering:emer_init.self:Program 3]]
*ptr++ = 0xff;
*ptr++ = 0xff;
*ptr++ = 0xff;
*ptr++ = 0xff;


===FIFO Commands===
data_size = 0x16;


[[PS3:HvReverseEngineering:RSXFIFOCommands]]
error = usb_wlan_cmd_send(0x1109, data, data_size);
if (error) {
fprintf(stderr, "%s:%d: could not send command 0x1109 (%d)\n",
__func__, __LINE__, error);
return error;
}


===Example How to Use FIFO Command Buffer===
sleep(2);


Here is a small Linux kernel module which shows you how to use FIFO command buffer on Linux.
memset(data, 0, sizeof(data));


* RSX allows to create multiple contexts.
ptr = data;
* This kernel module should run without problems with '''ps3fb''' driver already running.
* Make sure you unload '''ps3vram''' driver before running this module because '''ps3vram''' allocates all available RSX memory for itself and because of this, '''lv1_gpu_memory_allocate''' will always fail.
* This kernel module lets the RSX execute a simple program which contains only NOP (No Operation) commands.


Download source code: [http://lol.notsoldierx.com/~glevand/ps3/linux/ps3rsx.tar.gz]
*ptr++ = 0x1;


====Source Code====
data_size = 0x4;


<pre>
error = usb_wlan_cmd_send(0x207, data, data_size);
/*
if (error) {
* PS3 RSX
fprintf(stderr, "%s:%d: could not send command 0x207 (%d)\n",
*
__func__, __LINE__, error);
* This program is free software; you can redistribute it and/or modify it
return error;
* under the terms of the GNU General Public License as published
}
* by the Free Software Foundation; version 2 of the License.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/


#include <linux/module.h>
sleep(2);
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/io.h>
#include <linux/delay.h>


#include <asm/abs_addr.h>
memset(data, 0, sizeof(data));
#include <asm/cell-regs.h>
#include <asm/lv1call.h>
#include <asm/ps3.h>


#define RSX_FIFO_CMD_BUF_SIZE (1 * 1024 * 1024)
ptr = data;


#define RSX_MEM_SIZE (32 * 1024 * 1024)
*ptr++ = 0x4;


#define RSX_GPU_IOIF (0x0e000000ul)
data_size = 0x4;


#define RSX_FIFO_CTRL_SIZE (4 * 1024)
error = usb_wlan_cmd_send(0x203, data, data_size);
if (error) {
fprintf(stderr, "%s:%d: could not send command 0x203 (%d)\n",
__func__, __LINE__, error);
return error;
}


struct rsx_fifo_ctrl {
sleep(2);
u8 res[0x40];
u32 put;
u32 get;
};


static u32 *rsx_fifo_cmd_buf;
/* state 0xf */
static u64 rsx_fifo_cmd_buf_lpar;


static u64 rsx_mem_handle, rsx_mem_lpar;
memset(data, 0, sizeof(data));
static u64 rsx_ctx_handle;
static u64 rsx_fifo_ctrl_lpar;
static u64 rsx_drv_info_lpar;
static u64 rsx_reports_lpar, rsx_reports_size;


static struct rsx_fifo_ctrl *rsx_fifo_ctrl;
ptr = data;


/*
*ptr++ = 0xff;
* FIFO program
*ptr++ = 0x1f;
*/
static u32 rsx_fifo_prg[] = {
0x00000000, /* nop */
0x00000000, /* nop */
0x00000000, /* nop */
};


/*
memcpy(ptr, my_mac_addr, sizeof(my_mac_addr));
* ps3rsx_init
*/
static int __init ps3rsx_init(void)
{
unsigned long timeout;
int res;


/* FIFO command buffer must be allocated in XDR memory */
ptr = data + 0x8;


rsx_fifo_cmd_buf = kmalloc(RSX_FIFO_CMD_BUF_SIZE, GFP_KERNEL);
*ptr++ = 0x2;
if (!rsx_fifo_cmd_buf) {
*ptr++ = 0x2;
printk(KERN_INFO"could not allocate FIFO command buffer\n");
res = -ENOMEM;
goto fail;
}


res = lv1_gpu_memory_allocate(RSX_MEM_SIZE, 0, 0, 0, 0,
data_size = 0xa;
&rsx_mem_handle, &rsx_mem_lpar);
if (res) {
printk(KERN_INFO"lv1_gpu_memory_allocate failed (%d)\n", res);
res = -ENXIO;
goto fail_free_fifo_cmd_buf_mem;
}


res = lv1_gpu_context_allocate(rsx_mem_handle, 0,
error = usb_wlan_cmd_send(0x105f, data, data_size);
&rsx_ctx_handle, &rsx_fifo_ctrl_lpar, &rsx_drv_info_lpar,
if (error) {
&rsx_reports_lpar, &rsx_reports_size);
fprintf(stderr, "%s:%d: could not send command 0x105f (%d)\n",
if (res) {
__func__, __LINE__, error);
printk(KERN_INFO"lv1_gpu_context_allocate failed (%d)\n", res);
return error;
res = -ENXIO;
goto fail_free_gpu_mem;
}
}
/* map FIFO command buffer into RSX address space */


rsx_fifo_cmd_buf_lpar = ps3_mm_phys_to_lpar(__pa(rsx_fifo_cmd_buf));
return 0;
}


res = lv1_gpu_context_iomap(rsx_ctx_handle,
/*
RSX_GPU_IOIF, rsx_fifo_cmd_buf_lpar, RSX_FIFO_CMD_BUF_SIZE,
* usb_wlan_cmd_thread
CBE_IOPTE_PP_W | CBE_IOPTE_PP_R | CBE_IOPTE_M);
*/
if (res) {
static void *usb_wlan_cmd_thread(void *arg)
printk(KERN_INFO"lv1_gpu_context_iomap failed (%d)\n", res);
{
res = -ENXIO;
int error;
goto fail_free_gpu_mem;
 
error = usb_wlan_init();
if (error) {
fprintf(stderr, "%s:%d: could not initialize device (%d)\n",
__func__, __LINE__, error);
goto done;
}
}


/* map RSX FIFO control registers */
sleep(5);


rsx_fifo_ctrl = (struct rsx_fifo_ctrl *) ioremap(rsx_fifo_ctrl_lpar, RSX_FIFO_CTRL_SIZE);
error = usb_wlan_cmd_0x99();
if (!rsx_fifo_ctrl) {
if (error) {
printk(KERN_INFO"could not map FIFO control\n");
fprintf(stderr, "%s:%d: could not start scanning (%d)\n",
res = -ENXIO;
__func__, __LINE__, error);
goto fail_free_gpu_mem;
goto done;
}
}


/* PUT and GET offsets are in RSX address space */
error = usb_wlan_cmd_start_scan();
 
if (error) {
res = lv1_gpu_context_attribute(rsx_ctx_handle, 0x1,
fprintf(stderr, "%s:%d: could not start scanning (%d)\n",
RSX_GPU_IOIF + 0x0 /* PUT offset */, RSX_GPU_IOIF + 0x0 /* GET offset */,
__func__, __LINE__, error);
0x0, 0x0);
goto done;
if (res) {
printk(KERN_INFO"lv1_gpu_context_attribute(0x1) failed (%d)\n", res);
res = -ENXIO;
goto fail_unmap_fifo_ctrl;
}
}


/* copy FIFO commands to FIFO command buffer */
sleep(10);


memcpy(rsx_fifo_cmd_buf, rsx_fifo_prg, sizeof(rsx_fifo_prg));
error = usb_wlan_cmd_get_scan_results();
if (error) {
fprintf(stderr, "%s:%d: could not get scan results (%d)\n",
__func__, __LINE__, error);
goto done;
}


printk(KERN_INFO"GET offset (0x%08x) PUT offset (0x%08x)\n", rsx_fifo_ctrl->get, rsx_fifo_ctrl->put);
sleep(10);


/* kick FIFO */
done:


rsx_fifo_ctrl->put = RSX_GPU_IOIF + sizeof(rsx_fifo_prg);
usb_wlan_cmd_thread_done = 1;


/* poll until RSX is done processing FIFO commands */
return NULL;
}


timeout = 100;
/*
 
* main
while (timeout--) {
*/
if (rsx_fifo_ctrl->get == rsx_fifo_ctrl->put)
int main(int argc, char **argv)
break;
{
unsigned char buf[256];
pthread_t tid;
struct timeval tv;
int error;
 
pthread_mutex_init(&usb_wlan_cmd_mutex, NULL);
pthread_cond_init(&usb_wlan_cmd_cond, NULL);


msleep(1);
error = libusb_init(&usb_ctx);
if (error) {
fprintf(stderr, "%s:%d: libusb_init failed (%d)\n", __func__, __LINE__, error);
exit(1);
}
}


printk(KERN_INFO"GET offset (0x%08x) PUT offset (0x%08x)\n", rsx_fifo_ctrl->get, rsx_fifo_ctrl->put);
libusb_set_debug(usb_ctx, 5);


if (rsx_fifo_ctrl->get != rsx_fifo_ctrl->put) {
usb_dev_handle = libusb_open_device_with_vid_pid(usb_ctx, USB_VENDOR_ID, USB_PRODUCT_ID);
printk(KERN_INFO"FIFO command buffer timeout\n");
if (!usb_dev_handle) {
res = -ENXIO;
fprintf(stderr, "%s:%d: could not open device\n", __func__, __LINE__);
goto fail_unmap_fifo_ctrl;
exit(1);
}
}


return 0;
if(libusb_kernel_driver_active(usb_dev_handle, USB_IFACE_NUMBER)) {
fprintf(stdout, "%s:%d: kernel driver is attached\n", __func__, __LINE__);


fail_unmap_fifo_ctrl:
error = libusb_detach_kernel_driver(usb_dev_handle, USB_IFACE_NUMBER);
if (error) {
fprintf(stderr, "%s:%d: could not detach kernel driver (%d)\n",
__func__, __LINE__, error);
exit(1);
}


iounmap(rsx_fifo_ctrl);
fprintf(stdout, "%s:%d: kernel driver dettached\n", __func__, __LINE__);
}


error = libusb_claim_interface(usb_dev_handle, USB_IFACE_NUMBER);
if (error) {
fprintf(stderr, "%s:%d: could not claim interface (%d)\n",
__func__, __LINE__, error);
exit(1);
}


fail_free_gpu_mem:
error = libusb_control_transfer(usb_dev_handle, 0x40, 0x1, 0x9, 0x0,
usb_magic_data, sizeof(usb_magic_data), 0);
if (error < 0) {
fprintf(stderr, "%s:%d: could not do control transfer (%d)\n",
__func__, __LINE__, error);
exit(1);
}


lv1_gpu_memory_free(rsx_mem_handle);
fprintf(stdout, "%s:%d: number of bytes transferred (%d)\n", __func__, __LINE__, error);


fail_free_fifo_cmd_buf_mem:
error = libusb_control_transfer(usb_dev_handle, 0xc0, 0x0, 0x2, 0x0, buf, 2, 0);
if (error < 0) {
fprintf(stderr, "%s:%d: could not do control transfer (%d)\n",
__func__, __LINE__, error);
exit(1);
}


kfree(rsx_fifo_cmd_buf);
fprintf(stdout, "%s:%d: number of bytes received (%d)\n", __func__, __LINE__, error);


fail:
fprintf(stdout, "%s:%d: 0x%02x 0x%02x\n", __func__, __LINE__, buf[0], buf[1]);


return res;
usb_intr_transfer_ep5_in = libusb_alloc_transfer(0);
}
if (!usb_intr_transfer_ep5_in) {
fprintf(stderr, "%s:%d: could not allocate transfer\n", __func__, __LINE__);
exit(1);
}


/*
memset(usb_intr_transfer_ep5_in_buf, 0, sizeof(usb_intr_transfer_ep5_in_buf));
* ps3rsx_exit
*/
static void __exit ps3rsx_exit(void)
{
iounmap(rsx_fifo_ctrl);


lv1_gpu_context_iomap(rsx_ctx_handle, RSX_GPU_IOIF, rsx_fifo_cmd_buf_lpar,
libusb_fill_interrupt_transfer(usb_intr_transfer_ep5_in, usb_dev_handle, LIBUSB_ENDPOINT_IN | 0x5,
RSX_FIFO_CMD_BUF_SIZE, CBE_IOPTE_M);
usb_intr_transfer_ep5_in_buf, sizeof(usb_intr_transfer_ep5_in_buf),
usb_intr_transfer_ep5_in_cb, NULL, 0);


lv1_gpu_context_free(rsx_ctx_handle);
error = libusb_submit_transfer(usb_intr_transfer_ep5_in);
if (error) {
fprintf(stderr, "%s:%d: could not submit transfer (%d)\n",
__func__, __LINE__, error);
exit(1);
}


lv1_gpu_memory_free(rsx_mem_handle);
error = pthread_create(&tid, NULL, usb_wlan_cmd_thread, NULL);
if (error) {
fprintf(stderr, "%s:%d: could not create WLAN command thread (%d)\n",
__func__, __LINE__, error);
exit(1);
}


kfree(rsx_fifo_cmd_buf);
while (!usb_wlan_cmd_thread_done) {
}
tv.tv_sec = 1;
tv.tv_usec = 0;


module_init(ps3rsx_init);
error = libusb_handle_events_timeout(usb_ctx, &tv);
module_exit(ps3rsx_exit);
if (error) {
fprintf(stderr, "%s:%d: could not handle events (%d)\n",
__func__, __LINE__, error);
exit(1);
}
}


MODULE_LICENSE("GPL");
libusb_free_transfer(usb_intr_transfer_ep5_in);
MODULE_DESCRIPTION("PS3 RSX");
MODULE_AUTHOR("glevand");
</pre>


====Test====
error = libusb_release_interface(usb_dev_handle, USB_IFACE_NUMBER);
if (error)
fprintf(stderr, "%s:%d: could not release interface (%d)\n",
__func__, __LINE__, error);


<pre>
libusb_close(usb_dev_handle);
# insmod ./ps3rsx.ko
# dmesg


GET offset (0x0e000000) PUT offset (0x0e000000) # GET and PUT offsets before kicking FIFO
libusb_exit(usb_ctx);
GET offset (0x0e00000c) PUT offset (0x0e00000c)  # GET and PUT offsets after kicking FIFO
 
exit(0);
}
</pre>
</pre>


As you see, RSX processed our FIFO commands :)
====Output====


==Linux Driver==
<pre>
 
glevand@debian-hdd:~/ps3_usb_wlan$ sudo ./ps3_usb_wlan
* '''DRI/DRM is the ONLY way to go !!! No hacks like kernel modules with tons of IOCTLs !!!'''
sudo: unable to resolve host debian-hdd
* First implement 2D acceleration and then add 3D support
main:824: number of bytes transferred (32)
* The driver consists of 2 parts: '''DDX driver''' for X11 (user space) and '''DRM driver''' for Linux Kernel (kernel space)
main:833: number of bytes received (2)
* First implement DRM driver and test it from user space without DDX and libdrm by talking to it directly
main:835: 0x20 0x31
 
usb_wlan_cmd_send:288: sending command (0x114f) data size (0x0518) command size (0x0524)
===DDX Driver===
usb_intr_transfer_ep5_in_cb:233: === got interrupt transfer ===
 
usb_intr_transfer_ep5_in_cb:236: transfer status (0) length (36)
* Use '''libdrm'''
usb_handle_wlan_cmd_response:158: === got WLAN command response ===
* Use '''EXA API''' for 2D acceleration on X11 (or maybe use '''XAA API''')
usb_handle_wlan_cmd_response:191: command header:
* Use '''Kernel Mode Setting'''
usb_handle_wlan_cmd_response:192: command (0x1150)
 
usb_handle_wlan_cmd_response:199: tag (0xcafe)
===DRM Driver===
usb_handle_wlan_cmd_response:201: status (0x0006)
 
usb_handle_wlan_cmd_response:205: ==> command status != 0x1
* Extend '''nouveau''' driver or create a new one ???
usb_handle_wlan_cmd_response:207: payload_size (0x0000)
* '''Decision: create new DRM driver in order to learn how DRM framework in Linux kernel works and because we have to use LV1 calls to access RSX (and because it's a lot more fun to do it on my own). But use nouveau as an example for DRM driver. Maybe i should better use radeon DRM driver as an example beacuse it seems to be better designed and implemnted !!!'''
usb_handle_wlan_cmd_response:210: command payload:
* The driver is very low level and allows direct access to almost all RSX funtions, e.g. FIFO buffer, to achieve maximum performance.
usb_wlan_cmd_send:288: sending command (0x1171) data size (0x0000) command size (0x000c)
* All data buffers, e.g. vertices and textures, are managed by DRM framework (Linux kernel). To avoid copying from user to kernel space, the buffers will be mmaped into user space.
usb_intr_transfer_ep5_in_cb:233: === got interrupt transfer ===
* Provides an interface to manage graphic objects in VRAM.
usb_intr_transfer_ep5_in_cb:236: transfer status (0) length (36)
* Use '''TTM''' or '''GEM''' ??? TTM is used by radeon and nouvea drivers, so i guess we could use it too. GEM is for Intel chips.
usb_handle_wlan_cmd_response:158: === got WLAN command response ===
* Extend '''libdrm''' library to support new DRM driver.
usb_handle_wlan_cmd_response:191: command header:
* Fences can be implemented with '''RSX REF Control Register'''
usb_handle_wlan_cmd_response:192: command (0x1172)
 
usb_handle_wlan_cmd_response:199: tag (0xcafe)
====Memory Management====
usb_handle_wlan_cmd_response:201: status (0x0001)
 
usb_handle_wlan_cmd_response:207: payload_size (0x0000)
* Size of all memory objects must be multiple of the page size (4096 bytes) even if a smaller size is requested by user
usb_handle_wlan_cmd_response:210: command payload:
* Nouveau driver uses IOCTL '''DRM_NOUVEAU_GEM_NEW''' to allocate memory objects in VRAM or GART. The IOCTL returns the handle of the newly allocated memory object.
usb_intr_transfer_ep5_in_cb:233: === got interrupt transfer ===
* An example from Mesa how memory objects are used: [http://fxr.watson.org/fxr/source/external/bsd/drm/dist/libdrm/nouveau/nouveau_bo.c?v=NETBSD;im=10] [http://www.opensource.apple.com/source/X11libs/X11libs-60/mesa/Mesa-7.8.2/src/mesa/drivers/dri/nouveau/nouveau_bufferobj.c]
usb_intr_transfer_ep5_in_cb:236: transfer status (0) length (68)
 
usb_handle_wlan_event:133: === got WLAN event ===
====Video RAM====
usb_handle_wlan_event:144: event_count (0x01)
 
00000000: 00 04 00 00 10 00 00 00 3c 22 02 00 00 00 00 00 |........<"......|
* VRAM is allocated once during context creating and cannot be changed during the whole life of the context.
00000010: fc 90 02 c0 00 00 00 00 00 00 00 00 00 00 00 00 |................|
* '''lv1_gpu_memory_allocate''' returns LPAR address of allocated VRAM which can be mapped into kernel address space.
00000020: 13 00 00 20 00 00 00 00 00 00 00 00 00 00 00 00 |... ............|
* '''VRAM starts at offset 0x0 in GPU address space.'''
00000030: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|
* VRAM heap management is necessary, use e.g. TTM (ttm_bo_init_mm).
usb_wlan_cmd_send:288: sending command (0x116f) data size (0x0004) command size (0x0010)
* This memory type is used e.g. for vertices or textures.
usb_intr_transfer_ep5_in_cb:233: === got interrupt transfer ===
* It should be mappable from user space in order to allow user to put data there.
usb_intr_transfer_ep5_in_cb:236: transfer status (0) length (36)
* GameOS calls it '''Local Memory'''.
usb_handle_wlan_cmd_response:158: === got WLAN command response ===
* VRAM can be mapped into kernel-space with '''ioremap'''.
usb_handle_wlan_cmd_response:191: command header:
* To map VRAM into user-space map it first into kernel-space with '''ioremap''' and then use '''remap_pfn_range''' to map into user-space.
usb_handle_wlan_cmd_response:192: command (0x1170)
* Use '''VM_IO''' flag for this kind of memory when mapping it into user-space.
usb_handle_wlan_cmd_response:199: tag (0xcafe)
* Mapping examples: [http://www.scs.ch/~frey/linux/memorymap.html] [http://www.cs.fsu.edu/~baker/devices/projects/antgeo/avnet_june19/pci_avnet.c]
usb_handle_wlan_cmd_response:201: status (0x0001)
 
usb_handle_wlan_cmd_response:207: payload_size (0x0000)
====GART Memory====
usb_handle_wlan_cmd_response:210: command payload:
 
usb_wlan_cmd_send:288: sending command (0x115b) data size (0x005e) command size (0x006a)
* GART memory region is a memory region in System Memory but accessible by RSX through GART [http://dri.freedesktop.org/wiki/GART].
usb_intr_transfer_ep5_in_cb:233: === got interrupt transfer ===
* GameOS calls it '''Main Memory'''.
usb_intr_transfer_ep5_in_cb:236: transfer status (0) length (36)
* '''Problem: lv1_gpu_context_iomap supports ONLY 1MB and 64kB pages'''
usb_handle_wlan_cmd_response:158: === got WLAN command response ===
* Size of system memory objects mapped into GPU address space should be either multiple of 1MB which means wasting lots of RAM and we don't have enough of it anyways. This solution is NOT suitable.
usb_handle_wlan_cmd_response:191: command header:
* Or place several GART memory objects into 1 MB page and map it. That would mean we have to use memory manager for each 1MB page.
usb_handle_wlan_cmd_response:192: command (0x115c)
* That means, we have to allocate 1MB page even if user requested a smaller memory region. Then initialize a heap manager for this 1MB page and return ONLY requested size. The following requests for GART memory regions can be satisfied from the previously allocated 1MB pages which still have enough free memory.
usb_handle_wlan_cmd_response:199: tag (0xcafe)
* FIFO command buffer is an example of a GART memory object which has to be mapped into GPU address space with lv1_gpu_context_iomap before it can be used by RSX.
usb_handle_wlan_cmd_response:201: status (0x0001)
* User allocates FIFO command buffer in GART address space, maps it into user space, write commands into it and then pushes it to DRM driver which maps it into RSX address space and CALLs it.
usb_handle_wlan_cmd_response:207: payload_size (0x0000)
* '''TTM: TTM_PL_FLAG_TT for GART memory'''
usb_handle_wlan_cmd_response:210: command payload:
* '''GameOS applications using GCM library map GART memory beginning at offset 0x10000000 or 0x20000000, just after where the whole VRAM is mapped.'''
usb_wlan_cmd_send:288: sending command (0x1161) data size (0x0020) command size (0x002c)
* '''Don't use kmalloc for this type of memory. Use __get_free_pages and mark pages with flag VM_RESERVED before exporting it to user-space else they can be swapped out.'''
usb_intr_transfer_ep5_in_cb:233: === got interrupt transfer ===
* TTM uses '''struct ttm_backend_func''' to call driver specific GART mapping functions. '''nouveau_sgdma.c''' handles GART memory mapping.
usb_intr_transfer_ep5_in_cb:236: transfer status (0) length (36)
 
usb_handle_wlan_cmd_response:158: === got WLAN command response ===
====CPU Memory====
usb_handle_wlan_cmd_response:191: command header:
 
usb_handle_wlan_cmd_response:192: command (0x1162)
* This type of memory cannot be accessed by RSX at all.
usb_handle_wlan_cmd_response:199: tag (0xcafe)
* Because this type of memory is not mapped into RSX address space through GART we don't need to allocate it in 1MB multiples.
usb_handle_wlan_cmd_response:201: status (0x0001)
* What do we need it for ???
usb_handle_wlan_cmd_response:207: payload_size (0x0000)
 
usb_handle_wlan_cmd_response:210: command payload:
====Mapping Memory Objects into Kernel-Space====
usb_wlan_cmd_send:288: sending command (0x110d) data size (0x0080) command size (0x008c)
 
usb_intr_transfer_ep5_in_cb:233: === got interrupt transfer ===
* Nouveau driver uses '''ttm_bo_kmap''' to map memory objects into kernel-space (see '''ttm_bo_util.c''').
usb_intr_transfer_ep5_in_cb:236: transfer status (0) length (36)
* Nouveau driver uses '''ttm_bo_ioremap''' to map IO memory into kernel-space, e.g. VRAM or GPU registers (see '''ttm_bo_util.c''') which uses '''ioremp_wc''' or '''ioremp_nocache'''.
usb_handle_wlan_cmd_response:158: === got WLAN command response ===
* TTM uses page-wise allocation for buffers. The buffers are contiguous ONLY in a single page. That has a huge advantage over allocating 1MB contiguous memory blocks in kernel space. It's far easier to allocate a single page in Linux kernel than 1MB memory chunk, especially on PS3 arch which has only 256MB.
usb_handle_wlan_cmd_response:191: command header:
* '''Problem: lv1_gpu_context_iomap allows ONLY 1MB pages. Use lv1_put_iopte ???'''. See [http://lwn.net/Articles/304188/], [http://lxr.free-electrons.com/source/arch/powerpc/platforms/ps3/mm.c?a=sh#L562],  [http://wiki.ps2dev.org/ps3:hypervisor:lv1_put_iopte ] and [http://wiki.ps2dev.org/ps3:hypervisor:lv1_gpu_context_iomap].
usb_handle_wlan_cmd_response:192: command (0x110e)
* Yes, we can use '''lv1_put_iopte''' instead of '''lv1_gpu_context_iomap'''. That would solve the problem with 1MB pages on Linux. Both LV1 calls use the same internal LV1 function to map memory pages.
usb_handle_wlan_cmd_response:199: tag (0xcafe)
* '''lv1_gpu_context_iomap uses IOAS_ID 0 and IOID 1.'''
usb_handle_wlan_cmd_response:201: status (0x0001)
* TTM allows to map a buffer multiple times. Mapping information is stored in '''struct ttm_bo_kmap_obj'''.
usb_handle_wlan_cmd_response:207: payload_size (0x0000)
* '''To make single allocated pages look contiguous to kernel-space, TTM uses vmap'''.
usb_handle_wlan_cmd_response:210: command payload:
* '''It is possible to use 64KB pages for GART mapping without patching LV1. To enable 4KB pages support we have to patch LV1.'''
usb_wlan_cmd_send:288: sending command (0x1031) data size (0x0002) command size (0x000e)
* Tested with 64kB IO page size. It works fine.
usb_intr_transfer_ep5_in_cb:233: === got interrupt transfer ===
 
usb_intr_transfer_ep5_in_cb:236: transfer status (0) length (38)
====Mapping Memory Objects into User-Space====
usb_handle_wlan_cmd_response:158: === got WLAN command response ===
 
usb_handle_wlan_cmd_response:191: command header:
* User-space programs should be able to allocate memory objects in VRAM or GART and map it with '''mmap syscall'''.
usb_handle_wlan_cmd_response:192: command (0x1032)
* See '''nouveau_ttm.c:nouveau_ttm_mmap'''.
usb_handle_wlan_cmd_response:199: tag (0xcafe)
* Mapping memory objects into user-space avoids copying of data between user/kernel spaces.
usb_handle_wlan_cmd_response:201: status (0x0001)
* Problem: how to identify memory objects ???
usb_handle_wlan_cmd_response:207: payload_size (0x0002)
* '''libdrm''' uses handles which are returned by DRM kernel driver when a new memory object is created. The handle is passed to mmap syscall as parameter '''offset'''. DRM driver looks up the handle and identifies the appropriate memory object which is mapped into user-space then.
usb_handle_wlan_cmd_response:210: command payload:
* Nouveau driver uses TTM framework to map memory objects into user-space. TTM doesn't map all pages owned by the memory object at once but installs '''VM operation fault''' which maps single pages on demand. It makes sense because user application rarely accesses all pages of the mapped memory object at once.
00000000: 00 00                                          |..             |
* To map memory objects located in VRAM we have to map it into kernel space first with '''ioremap'''.
usb_wlan_cmd_send:288: sending command (0x1041) data size (0x0006) command size (0x0012)
 
usb_intr_transfer_ep5_in_cb:233: === got interrupt transfer ===
====FIFO Command Buffer====
usb_intr_transfer_ep5_in_cb:236: transfer status (0) length (42)
 
usb_handle_wlan_cmd_response:158: === got WLAN command response ===
* Every context has its own one main FIFO command buffer which is NOT accessible directly by user space.
usb_handle_wlan_cmd_response:191: command header:
* User-space applications can allocate additional FIFO command buffers in GART memory space, map it into user space, store commands there and submit to DRM driver.
usb_handle_wlan_cmd_response:192: command (0x1042)
* Nouveau driver uses IOCTL '''NOUVEAU_GEM_PUSHBUF''' to execute FIFO command buffers. See '''nouveau_gem.c:nouveau_gem_ioctl_pushbuf'''.
usb_handle_wlan_cmd_response:199: tag (0xcafe)
* By user applications submitted FIFO command buffers are mapped by DRM driver into RSX address space first and then executed with CALL command.
usb_handle_wlan_cmd_response:201: status (0x0001)
* '''Problem: All references to graphics objects contained in FIFO command buffers must be expressed in RSX address space. How does user space know the right offsets of the referenced objects ???'''
usb_handle_wlan_cmd_response:207: payload_size (0x0006)
* To solve the above problem, Nouveau driver uses relocations which are submitted to DRM driver together with FIFO command buffers. The DRM driver applies the specified relocations before executing the FIFO command buffer. See '''nouveau_gem.c:nouveau_gem_pushbuf_reloc_apply'''.
usb_handle_wlan_cmd_response:210: command payload:
* Relocations contain memory object handles which they apply to. The DRM driver looks up the memory object by its handle and the memory objects contain GPU address space offsets.
00000000: 00 11 22 33 44 55                              |.."3DU          |
 
usb_wlan_cmd_send:288: sending command (0x0029) data size (0x0002) command size (0x000e)
=====Example=====
usb_intr_transfer_ep5_in_cb:233: === got interrupt transfer ===
<pre>
usb_intr_transfer_ep5_in_cb:236: transfer status (0) length (38)
      ---------------------------------------------------------------
usb_handle_wlan_cmd_response:158: === got WLAN command response ===
      |                                                              |
usb_handle_wlan_cmd_response:191: command header:
      |                                                              |
usb_handle_wlan_cmd_response:192: command (0x002a)
    \|/    Main FIFO command buffer (one per allocated context)     |
usb_handle_wlan_cmd_response:199: tag (0xcafe)
------------------------------        ------------------------------------
usb_handle_wlan_cmd_response:201: status (0x0001)
|          |        |                    |          |          |          |
usb_handle_wlan_cmd_response:207: payload_size (0x0002)
|    ...    |  CALL  |        ...        |  CALL  |  ...    |  JMP    |
usb_handle_wlan_cmd_response:210: command payload:
|          |        |                    |          |          |          |
00000000: 02 02                                          |..              |
------------------------------        ------------------------------------
usb_wlan_cmd_send:288: sending command (0x110b) data size (0x000c) command size (0x0018)
                |      /|\                    |        /|\
usb_intr_transfer_ep5_in_cb:233: === got interrupt transfer ===
    -------------|        |                    |          |
usb_intr_transfer_ep5_in_cb:236: transfer status (0) length (48)
    |              ------|            --------|          |
usb_handle_wlan_cmd_response:158: === got WLAN command response ===
  \|/              |                  |              ---|
usb_handle_wlan_cmd_response:191: command header:
-----------------------                |              |
usb_handle_wlan_cmd_response:192: command (0x110c)
|       |      |      |              |              |
usb_handle_wlan_cmd_response:199: tag (0xcafe)
| ... ... |  RET  |              |              |
usb_handle_wlan_cmd_response:201: status (0x0001)
|      |      |      |              |              |
usb_handle_wlan_cmd_response:207: payload_size (0x000c)
-----------------------                |              |
usb_handle_wlan_cmd_response:210: command payload:
  FIFO command buffer 1                |              |
00000000: 01 00 00 00 00 00 00 00 20 00 00 00            |........ ...    |
  (allocated by user space)            \|/              |
usb_wlan_cmd_send:288: sending command (0x1109) data size (0x0016) command size (0x0022)
                                    -----------------------
usb_intr_transfer_ep5_in_cb:233: === got interrupt transfer ===
                                    |      |      |      |
usb_intr_transfer_ep5_in_cb:236: transfer status (0) length (58)
                                    |  ...  |  ...  |  RET  |
usb_handle_wlan_cmd_response:158: === got WLAN command response ===
                                    |      |      |      |
usb_handle_wlan_cmd_response:191: command header:
                                    -----------------------
usb_handle_wlan_cmd_response:192: command (0x110a)
                                      FIFO command buffer 2
usb_handle_wlan_cmd_response:199: tag (0xcafe)
                                    (allocated by user space)
usb_handle_wlan_cmd_response:201: status (0x0001)
</pre>
usb_handle_wlan_cmd_response:207: payload_size (0x0016)
 
usb_handle_wlan_cmd_response:210: command payload:
====Fences====
00000000: 01 00 00 00 15 27 12 00 06 00 00 00 09 00 01 00 |.....'..........|
 
00000010: ff ff ff ff ff ff                              |......         |
* Nouveau driver implements DRM fences with REF control register. See '''nouveau_fence.c:nouveau_fence_new'''.
usb_wlan_cmd_send:288: sending command (0x0207) data size (0x0004) command size (0x0010)
* Newer Nvidia chips support semaphores. Nouveau driver uses semaphores for fences if they are supported.
usb_intr_transfer_ep5_in_cb:233: === got interrupt transfer ===
* libgcm functions '''SetWriteCommandLabel''' and '''SetWaitLabel''' use semaphores.
usb_intr_transfer_ep5_in_cb:236: transfer status (0) length (40)
* '''SetWriteCommandLabel''' releases semaphore and '''SetWaitLabel''' acquires semaphore.
usb_handle_wlan_cmd_response:158: === got WLAN command response ===
* Semaphores are placed in VRAM. Nouveau driver creates a small VRAM heap for semaphores. See '''nouveau_fence.c:nouveau_fence_channel_init'''.
usb_handle_wlan_cmd_response:191: command header:
 
usb_handle_wlan_cmd_response:192: command (0x0208)
====IOCTLs====
usb_handle_wlan_cmd_response:199: tag (0xcafe)
 
usb_handle_wlan_cmd_response:201: status (0x0001)
=====Context Create=====
usb_handle_wlan_cmd_response:207: payload_size (0x0004)
 
usb_handle_wlan_cmd_response:210: command payload:
* Creates new RSX context
00000000: 01 00 00 00                                    |....           |
* Allocates VRAM and memory for FIFO buffer
usb_wlan_cmd_send:288: sending command (0x0203) data size (0x0004) command size (0x0010)
* Needed VRAM size and FIFO buffer size must be known during context creation
usb_intr_transfer_ep5_in_cb:233: === got interrupt transfer ===
 
usb_intr_transfer_ep5_in_cb:236: transfer status (0) length (40)
=====Context Destroy=====
usb_handle_wlan_cmd_response:158: === got WLAN command response ===
 
usb_handle_wlan_cmd_response:191: command header:
* Destroys previously allocated context
usb_handle_wlan_cmd_response:192: command (0x0204)
 
usb_handle_wlan_cmd_response:199: tag (0xcafe)
=====Context Attribute=====
usb_handle_wlan_cmd_response:201: status (0x0001)
 
usb_handle_wlan_cmd_response:207: payload_size (0x0004)
* Changes context attributes
usb_handle_wlan_cmd_response:210: command payload:
 
00000000: 04 00 00 00                                    |....           |
=====Graphic Object Creatre=====
usb_wlan_cmd_send:288: sending command (0x105f) data size (0x000a) command size (0x0016)
 
usb_intr_transfer_ep5_in_cb:233: === got interrupt transfer ===
* Create a graphic object either in VRAM or in XDR
usb_intr_transfer_ep5_in_cb:236: transfer status (0) length (36)
* Used to create FIFO command buffers too (only in XDR of course because RSX supoorts FIFO command buffer in XDR only)
usb_handle_wlan_cmd_response:158: === got WLAN command response ===
usb_handle_wlan_cmd_response:191: command header:
usb_handle_wlan_cmd_response:192: command (0x1060)
usb_handle_wlan_cmd_response:199: tag (0xcafe)
usb_handle_wlan_cmd_response:201: status (0x0001)
usb_handle_wlan_cmd_response:207: payload_size (0x0000)
usb_handle_wlan_cmd_response:210: command payload:
usb_intr_transfer_ep5_in_cb:233: === got interrupt transfer ===
usb_intr_transfer_ep5_in_cb:236: transfer status (0) length (68)
usb_handle_wlan_event:133: === got WLAN event ===
usb_handle_wlan_event:144: event_count (0x01)
00000000: 80 00 00 00 00 10 00 00 9e 2b 02 00 04 00 00 00 |.........+......|
00000010: fc 90 02 c0 01 00 00 00 00 00 00 00 00 00 00 00 |................|
00000020: 13 00 00 20 00 00 00 00 00 00 00 00 00 00 00 00 |... ............|
00000030: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|
usb_wlan_cmd_send:288: sending command (0x0099) data size (0x003e) command size (0x004a)
usb_intr_transfer_ep5_in_cb:233: === got interrupt transfer ===
usb_intr_transfer_ep5_in_cb:236: transfer status (0) length (98)
usb_handle_wlan_cmd_response:158: === got WLAN command response ===
usb_handle_wlan_cmd_response:191: command header:
usb_handle_wlan_cmd_response:192: command (0x009a)
usb_handle_wlan_cmd_response:199: tag (0xcafe)
usb_handle_wlan_cmd_response:201: status (0x0001)
usb_handle_wlan_cmd_response:207: payload_size (0x003e)
usb_handle_wlan_cmd_response:210: command payload:
00000000: 4a 55 50 49 54 45 52 2d 54 57 4f 2d 46 57 2d 32 |JUPITER-TWO-FW-2|
00000010: 30 2e 30 2e 31 32 2e 70 30 28 4a 61 6e 20 31 39 |0.0.12.p0(Jan 19|
00000020: 20 32 30 31 30 20 32 31 3a 32 30 3a 35 33 29 00 | 2010 21:20:53).|
00000030: 00 00 00 00 00 00 00 00 00 00 00 00 00 00      |..............  |
usb_wlan_cmd_send:288: sending command (0x1035) data size (0x0019) command size (0x0025)
usb_intr_transfer_ep5_in_cb:233: === got interrupt transfer ===
usb_intr_transfer_ep5_in_cb:236: transfer status (0) length (61)
usb_handle_wlan_cmd_response:158: === got WLAN command response ===
usb_handle_wlan_cmd_response:191: command header:
usb_handle_wlan_cmd_response:192: command (0x1036)
usb_handle_wlan_cmd_response:199: tag (0xcafe)
usb_handle_wlan_cmd_response:201: status (0x0001)
usb_handle_wlan_cmd_response:207: payload_size (0x0019)
usb_handle_wlan_cmd_response:210: command payload:
00000000: 00 01 64 00 00 00 00 00 00 00 03 0d 01 02 03 04 |..d.............|
00000010: 05 06 07 08 09 0a 0b 0c 0d                      |.........      |
usb_intr_transfer_ep5_in_cb:233: === got interrupt transfer ===
usb_intr_transfer_ep5_in_cb:236: transfer status (0) length (68)
usb_handle_wlan_event:133: === got WLAN event ===
usb_handle_wlan_event:144: event_count (0x01)
00000000: 80 00 00 00 04 00 00 00 96 2e 02 00 01 00 00 00 |................|
00000010: fc 90 02 c0 00 00 00 00 00 00 00 00 00 00 00 00 |................|
00000020: 13 00 00 20 00 00 00 00 00 00 00 00 00 00 00 00 |... ............|
00000030: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|
usb_wlan_cmd_send:288: sending command (0x1033) data size (0x05b0) command size (0x05bc)
usb_intr_transfer_ep5_in_cb:233: === got interrupt transfer ===
usb_intr_transfer_ep5_in_cb:236: transfer status (0) length (1403)
usb_handle_wlan_cmd_response:158: === got WLAN command response ===
usb_handle_wlan_cmd_response:191: command header:
usb_handle_wlan_cmd_response:192: command (0x1034)
usb_handle_wlan_cmd_response:199: tag (0xcafe)
usb_handle_wlan_cmd_response:201: status (0x0001)
usb_handle_wlan_cmd_response:207: payload_size (0x0557)
usb_handle_wlan_cmd_response:210: command payload:
...
Here is scan output (removed by me)
...
</pre>


=====Graphic Object Destroy=====
===Associate with AP===


* Frees previously created graphic object
* I got association with AP working.
* If  WLAN device is connected to an AP then the green LED is on, when data is received then the LED blinks.
* '''Data reception works finally !!!'''


=====FIFO Execute=====
====How to Associate with WPA AP====
* Set common configuration (command 0x1005)
* Set WPA configuration (command 0x1019)
* Set rate configuration (command 0x1ed)
* Associate (command 0x1001)


* Allows user space applications to execute FIFO commands.
===Packet Reception===
* To avoid copying of buffers allocated by user space to main FIFO command buffer use CALL and RET RSX FIFO commands to execute FIFO commands in buffers allocated by user space.
* Several FIFO command buffers can be submitted at once.


=====Framebuffer=====
* EP6 IN and EP7 IN endpoints are used for packet reception
* LV2 sends bulk transfers to both endpoints
* '''4''' bulk transfers are sent simultaneously for each enpoint
* Every bulk transfer is of size '''0x620'''
* '''Make sure you set multicast address filter properly or else you won't receive broadcast packets !!!'''
* Bulk transfers returned by the host controller which do not contain any data have size of '''0x10''' bytes else transfers contain valid Ethernet frame. All 802.11 related data is stripped by the WLAN Gelic device.
* '''Make sure you set right MAC address with command 0x115b else device won't be able to receive packets destined to its own MAC address !!!'''


* Kernel DRM driver has to implement a frame buffer driver too
====Test with libusb====
* Nouvea driver allocates frame buffer in video RAM and maps it into kernel address space (see '''nouveau_fbcon.c:nouveau_fbcon_create'''). Current ps3fb Linux driver doesn't allocate frame buffer in vide RAM but in system RAM.
* Direct access to video RAM from kernel is very very slow but some of frame buffer functions in Nouvea driver are hardware accelerated. We could do it the same way on Linux and get a hardware accelerated frame buffer this way. Not sure why ps3fb authors didn't add hardware acceleration to frame buffer. The reason why it was not implemnted in ps3fb is because LV1 doesn't create 2D graphic objects needed for 2D hardware acceleration.
* '''lv1_gpu_allocate_memory''' returns LPAR address of video RAM allocated for the RSX context.
* Unfortunately '''lv1_gpu_context_allocate''' doesn't initialize 2D ROP objects but we could use 3D operations to implement 2D ROPs.


===libdrm===
<pre>
usb_bulk_transfer_ep6_in_cb:318: === got data transfer ===
usb_bulk_transfer_ep6_in_cb:321: transfer status (0) length (98)
00000000: ff ff ff ff ff ff ?? ?? ?? ?? ?? ?? 08 00 45 00 |..............E.|
00000010: 00 54 00 00 40 00 40 01 b5 fe c0 a8 01 5b c0 a8 |.T..@.@......[..|
00000020: 01 ff 08 00 9c 69 0d 45 00 e2 4e 5d 34 26 00 07 |.....i.E..N]4&..|
00000030: df e1 08 09 0a 0b 0c 0d 0e 0f 10 11 12 13 14 15 |................|
00000040: 16 17 18 19 1a 1b 1c 1d 1e 1f 20 21 22 23 24 25 |.......... !"#$%|
00000050: 26 27 28 29 2a 2b 2c 2d 2e 2f 30 31 32 33 34 35 |&'()*+,-./012345|
00000060: 36 37                                          |67              |
usb_bulk_transfer_ep6_in_cb:318: === got data transfer ===
usb_bulk_transfer_ep6_in_cb:321: transfer status (0) length (16)
00000000: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 01 00 |................|
usb_bulk_transfer_ep6_in_cb:318: === got data transfer ===
usb_bulk_transfer_ep6_in_cb:321: transfer status (0) length (16)
00000000: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 02 00 |................|
usb_bulk_transfer_ep6_in_cb:318: === got data transfer ===
usb_bulk_transfer_ep6_in_cb:321: transfer status (0) length (16)
00000000: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 03 00 |................|
</pre>


* Add support for RSX DRM to '''libdrm'''
====Multicast Address Filter====


===Test Kernel Module and Program===
* WLAN Gelic device supports hardware multicast address filtering
* Multicast address filtering is implemented with MAC address hashing and filter bitmap
* Filter bitmap is of size '''4 * 8''' bytes
* Multicast address filter is set with command '''0x1161'''


* I uploaded here a test kernel module and a test user application: [http://www.gitbrew.org/~glevand/ps3/linux/ps3rsx_kernel.tar.gz] and [http://www.gitbrew.org/~glevand/ps3/linux/ps3rsx_user.tar.gz]
=====MAC Address Hash Function=====
* I used a similar technique for mapping GPU resources into user-space like Linux kernel DRM drivers do it, e.g. Nouveau. But of course everything is very simplified in comparison with Nouveau driver. All GPU resources are mapped to user-space with mmap and there is no data copying between user and kernel space, for performance reasons. Mapping GPU resources into user-space like this is more flexible than IOCTLs.
* '''The purpose of the kernel module and the user application is to test how RSX works, to test FIFO commands and other stuff i reversed from Lv2. It's NOT for end users.'''
* Before loading the kernel module make sure ps3vram kernel module is NOT loaded.
* I used 64kB IO pages for GPU context. 4kB IO page size would be definitely a lot better for that we have to patch LV1. I will add this patch to my ps3mfw tasks for LV1.
* Just load the kernel module and then run the user application.
* The user application maps all context resources and executes some simple FIFO commands, like JMP or SET REF.
* I will add more examples later.
* By default, the kernel module allocates 8MB VRAM, 64kB FIFO and 1MB GART memory. You can change it by using kernel module parameters.
* Take a look at how i made non-contiguous allocated GART memory look contiguous to GPU, kernel-space and user-space.
* The kernel module needs some IOCTLs, e.g. for setting display buffers or flip status, because it can be done ONLY with LV1 calls. I will add it later.


===Links===
* Used by LV2


* http://yangman.ca/blog/2009/10/linux-graphics-driver-stack-explained
<pre>
* http://www.bitwiz.org.uk/s/how-dri-and-drm-work.html
unsigned char hash(unsigned char *data, unsigned int size)
* http://dri.sourceforge.net/doc/drm_low_level.html
{
* http://www.botchco.com/agd5f/?p=50
        unsigned int hash;
* http://webcvs.freedesktop.org/xorg/xc/programs/Xserver/hw/xfree86/doc/DESIGN?view=co
        int i, j;
* http://www.x.org/wiki/ModularDevelopersGuide
 
* http://www.xfree86.org/current/DESIGN20.html
        /*XXX: reverse data bits */
* http://nouveau.freedesktop.org/wiki/GraphicStackOverview
 
* http://cgit.freedesktop.org/nouveau/xf86-video-nouveau/tree/
        hash = 0xffffffff;
* http://cgit.freedesktop.org/xorg/xserver/tree/hw/xfree86/doc/exa-driver.txt
 
* http://cgit.freedesktop.org/xorg/xserver/tree/hw/xfree86/xaa/XAA.HOWTO
        for (i = 0; i < size; i++) {
* http://cgit.freedesktop.org/nouveau/linux-2.6/tree/drivers/gpu/drm
                hash = (((unsigned int) data[i]) << 24) ^ hash;
* http://kernel.org/doc/htmldocs/drm/drmInternals.html
* http://paginas.fe.up.pt/~mei04010/dri-architecture.pdf
* http://www.ecsl.cs.sunysb.edu/tr/TR222.pdf
* http://www.freesoftwaremagazine.com/columns/the_new_xorg_features
* http://www.freesoftwaremagazine.com/columns/xorgs_x_window_innovation_its_not_all_about_graphics#
* http://www.virtuousgeek.org/exa-driver.txt
* http://www.x.org/wiki/ttm
* http://nouveau.freedesktop.org/wiki/NvObjectTypes
* TTM: [http://lwn.net/Articles/257417/] [http://nouveau.freedesktop.org/wiki/TTMMemoryManager?action=AttachFile&do=get&target=mm.pdf]
* GEM: [http://lwn.net/Articles/283798/]
* TTM vs GEM: [http://lwn.net/Articles/283793/]
* OMAP DRM Driver: https://github.com/robclark/kernel-omap4/tree/omap_gpu-android/drivers/gpu/drm/omap


=BD Drive=
                for (j = 0; j < 8; j++) {
Crossreference: [http://wiki.gitbrew.org/wikibrew/PS3:HvReverseEngineering#BD_Drive gitbrew.org::HV#BD Drive] <br />
                        if (((int) hash) >= 0) {
                                hash = hash << 1;
                        } else {
                                hash = (hash << 1) ^ 0x04c10000;
                                hash = hash ^ 0x00001db7;
                        }
                }
        }


        hash = ((hash >> 24) & 0xf8) | (hash & 0x7);


==Profile==
        return hash & 0xff;
}


* BD profile can be read with '''GET PROFILE''' device command or SCSI command '''GET CONFIGURATION'''
h = hash(mac_addr, 6);
v = 1 << (h & 0x1f);    /* word value in filter */
p = h >> 5;            /* word position in filter */


===Profile Table===


{| class="wikitable"
For broadcast address:
|-
------------------------
! Profile !! Description
 
|-
v = 0x20000000
| 0x0 || No Current Profile
p = 7
|-
| 0x2 || Removable Disk
|-
| 0x8 || CD-ROM
|-
| 0x9 || CD-R
|-
| 0xa || CD-RW
|-
| 0x10 || DVD-ROM
|-
| 0x11 || DVD-R Sequential recording
|-
| 0x12 || DVD-RAM
|-
| 0x13 || DVD-RW Restricted Overwrite
|-
| 0x14 || DVD-RW Sequential recording
|-
| 0x1a || DVD+RW
|-
| 0x1b || DVD+R
|-
| 0x40 || BD-ROM
|-
| 0x41 || BD-R Sequential Recording(TBD)
|-
| 0x42 || BD-R Random Recording(TBD)
|-
| 0x43 || BD-RE
|-
| 0x50 || PS1 CD-ROM
|-
| 0x60 || PS2 CD-ROM
|-
| 0x61 || PS2 DVD-ROM
|-
| 0x70 || PS3 DVD-ROM
|-
| 0x71 || PS3 BD-ROM
|-
| 0x10000 || CD-DA
|-
| 0x20000 || SACD
|-
| 0x100000 || Dual Layer (Parallel)
|-
| 0x200000 || Dual Layer (else Parallel)
|}


==Buffer==
That's why 0x20 is used with command 0x1161 !!! Without it the device won't deliver broadcast traffic.
Learned it the hard way, after 2 days of trying to get packet reception working :)
</pre>


* BD drive has several buffers associated with internal flash
===Packet Transmission===
* Buffer can be read and written with SCSI commands '''READ/WRITE BUFFER'''
* Writing buffer is enabled with SCSI command '''MODE SELECT 10''' first


===Buffer Table===
* Tx packets are sent to EP6 OUT
* Tx packets are normal Ethernet frames, they don't contain any WLAN data or other headers


{| class="wikitable"
===AP Mode===
|-
! ID !! Size !! Description
|-
| 0x0 || 0x8000 || Used to transfer firmware to BD drive
|-
| 0x1 || 0x800 || Serial Flash
|-
| 0x2 || 0x60 || P-Block
|-
| 0x3 || 0x670 || S-Block
|-
| 0x4 || 0x8000 || Host Revocation List (HRL) Empty
|-
| 0x5 || 0x8000 || Host Revocation List (HRL) Current
|-
| 0x6 || 0x670 || S-Block
|-
| 0x7 || 0x8000 || Host Revocation List (HRL)
|}


===HRL Buffer===
* I got AP mode working with security disabled for now


* Size is 32KB just like AACS specifications prescribes (See AACS Common Specification 3.2.5.2 Host Revocation List Record)
====AP Mode with Security Disabled====
* '''We could replace HRL with an older one in BD drive flash and restore revoked Host Certificates !!!'''


==Device Commands==
* Set AP SSID (command 0x5)
* Set channel (command 0x11)
* Set AP opmode (command 0xb9)
* Configure rate control (command 0x1ed)
* Set AP WEP Configuration (command 0x5b, all 0s)
* Command 0x61 (param 0x0)
* Command 0xc5 (param 0x0)
* Command 0x1 (param 0x1)
* Command 0x1dd (param 0x2)
* Now green LED should be on


===Get Profile (0x11)===
===ps3-jupiter Linux Drivers===


* BD profile can be read with LV1 call '''lv1_send_storage_device_command''' and command '''0x11'''
* ps3_jupiter.ko is the common part of STA and AP mode. It implements a command interface to WLAN Gelic device and disptaches events to STA and AP drivers.
* LV1 sends SCSI command '''GET CONFIGURATION''' to BD drive with '''requested type 0x0''', '''starting feature number 0x0''' and '''allocation length 0x8'''
* ps3_jupiter_sta.ko is a STA mode implementation.
* See SCSI command '''GET CONFIGURATION'''
* ps3_jupiter_ap.ko is a AP mode implementation.
* Simple scanning works already in STA mode (try it out with '''iwlist scan''')
* Packet reception works
* Packet transmission works
* '''WPA/WPA2''' fully working and usable with '''wpa_supplicant'''


===Auto Request Sense Mode On/Off (0x30)===


* LV1 expects a 4 byte value: 0x0 - On, 0x1 - Off
'''Finally, after several weeks of hard programming and reversing, the WLAN driver ps3_jupiter_sta achieved the milestone where i can use it with WPA2 :) I actually use it currently with WPA2 on my PS3 slim. It works damn !!! Try it out and report bugs and problems to me.'''
* can be get/set via GameOS sc0x25C/604: sys_storage_send_device_command(fd of bdvd,0x30,value,4,0,0 )


==SCSI Commands==
====TODO====


===Get Configuration===
* Implement association in STA mode (finished)
* Implement packet reception and transmission in STA mode (finished)
* Implement WEP support
* Implement AP mode
* Find out if Jupiter supports Monitor mode and if yes how to enable it
* Implement EURUS driver for PHATs (has many advantages over the old OtherOS approach, e.g. AP mode)
* Port to FreeBSD


Getting the profile of a BD movie disc:
==LV2 Network Stack==
<pre>
# sg_raw -r 0x8 /dev/sr0 46 02 00 00 00 00 00 00 08 00
SCSI Status: Good


Sense Information:
* LV2 uses BSD network stack, e.g. '''struct mbuf'''
sense buffer empty
* It's almost identical to FreeBSD network stack.
 
===Network Device===
 
====IOCTLs====
 
=====Set Multicast Address Filter (0x81012000)=====
 
* Sets multicast address filter
* Uses LV1 calls '''lv1_net_remove_multicast_address''' and '''lv1_net_add_multicast_address''' for Ethernet Gelic device
* Uses Eurus commands '''0x1161''', '''0x1163''' and '''0x1165''' for WLAN Gelic device
 
=====Unknown (0x8101200E)=====
 
* Uses LV1 call '''lv1_net_control(0x8000000000000001)'''
 
=====Unknown (0x81040000)=====
 
* Uses LV1 call '''lv1_net_control(0x8, [0x0, 0x1 or 0x2])''' for Ethernet Gelic device
* Uses Eurus commands '''0x116F''', '''0x115D''' and '''0x115B''' for WLAN Gelic device
 
=====Enable/Disable WOL Magic Packet (0x81080000)=====


Received 8 bytes of data:
* Enables/Disables WOL Magic Packet
00    00 00 00 38 00 00 00 40                            ...8...@ 
* Uses LV1 call '''lv1_net_control(0x5 /* GELIC_LV1_SET_WOL */, 0x1 /* GELIC_LV1_WOL_MAGIC_PACKET */)''' for Ethernet Gelic device
* Uses Eurus commands '''0x1139''' and '''0x1155''' for WLAN Gelic device


# 0x40 means BD-ROM
=====Unknown (0x81080001)=====
</pre>


Getting the profile of a PS3 game disc:
* Uses LV1 call '''lv1_net_control(0x5 /* GELIC_LV1_SET_WOL */, 0x2)''' for Ethernet Gelic device
<pre>
* Uses Eurus commands '''0x113B''' and '''0x1157''' for WLAN Gelic device
# sg_raw -r 0x8 /dev/sr0 46 02 00 00 00 00 00 00 08 00
SCSI Status: Good


Sense Information:
=====Unknown (0x81080002)=====
sense buffer empty


Received 8 bytes of data:
* Uses LV1 call '''lv1_net_control(0x5 /* GELIC_LV1_SET_WOL */, 0x3)''' for Ethernet Gelic device
00    00 00 00 38 00 00 ff 71                            ...8...q
* Uses Eurus commands '''0x113D''' and '''0x1159''' for WLAN Gelic device
# 0x71 means PS3 BD-ROM
</pre>


===Get SS Key===
=====Unknown (0x81080003)=====


* By SCSI standard undocumented parameters are used
* Uses LV1 call '''lv1_net_control(0x5 /* GELIC_LV1_SET_WOL */, 0x4)''' for Ethernet Gelic device
* '''SCSI Report Key''' command with '''key format 0x3''' and '''key class 0xe0'''
* Uses Eurus command '''0x1161''' for WLAN Gelic device
* 8 bytes are returned by BD drive
* Used by VSH


Test with PS3 game disc:
=====Unknown (0x81080005)=====
<pre>
# sg_raw -r 8 /dev/sr0 a4 00 00 00 00 00 00 e0 00 08 03 00
SCSI Status: Good


Sense Information:
* Uses LV1 call '''lv1_net_control(0x5 /* GELIC_LV1_SET_WOL */, 0x6 /* GELIC_LV1_WOL_ADD_MATCH_ADDR */)''' for Ethernet Gelic device
sense buffer empty
* Uses Eurus commands '''0x116D''' and '''0x1167''' for WLAN Gelic device


Received 8 bytes of data:
===Network Packet===
  00    00 06 00 00 00 00 00 04                            ........         
 
</pre>
* LV2 network packet is represented by '''struct mbuf'''
 
=RSX=
Crossreference: [http://wiki.gitbrew.org/index.php/PS3:HvReverseEngineering#RSX gitbrew.org::RSX] <br />
 
==HV Calls==
 
===lv1_gpu_memory_allocate===
 
* LV1 supports 16 memory handles simultaneously.
* LV1 uses a bitmap to manage GPU VRAM.
* The bitmap is located in LV1 memory, 4 double words.
* Each bit corresponds to 1MB VRAM, 256bit = 256MB VRAM.
* 2MB at the top of VRAM are preallocated as you can see below.
 
<pre>
<memory handle> = 0x5a5a5a5a xor <memory handle index>
</pre>
 
====Memory Context Object====
 
offset 0x8 - memory handle (4 bytes)
 
offset 0x10 - VRAM LPAR start address (8 bytes)
 
offset 0x18 - VRAM LPAR end address (8 bytes)
 
====Test====
 
* The offset of bitmap could be different on your system because it's allocated dynamically.
* '''First 9MB of VRAM were allocated by ps3fb Linux driver.'''
 
Before allocating VRAM:
<pre>
glevand@debian-hdd:~$ sudo dd if=/dev/ps3ram bs=1 count=$((0x20)) skip=$((0x1f85b0)) | hexdump -C
00000000  00 00 00 00 00 00 01 ff  00 00 00 00 00 00 00 00  |.......ÿ........|
00000010  00 00 00 00 00 00 00 00  c0 00 00 00 00 00 00 00  |........À.......|
</pre>
 
After allocating 32 MB VRAM:
<pre>
glevand@debian-hdd:~$ sudo dd if=/dev/ps3ram bs=1 count=$((0x20)) skip=$((0x1f85b0)) | hexdump -C
00000000  00 00 01 ff ff ff ff ff  00 00 00 00 00 00 00 00  |...ÿÿÿÿÿ........|
00000010  00 00 00 00 00 00 00 00  c0 00 00 00 00 00 00 00  |........À.......|
</pre>
 
===lv1_gpu_context_allocate===
 
* Register %r4 is flags.
* '''Found the place in LV1 where LV1 sets IO page size for GART memory mapping. We could patch it and set to 4KB. That would make a lot of things easier for RSX developers on Linux.'''
* 1MB pages make RSX driver for Linux hard to implement because allocating 1Mb contiguous memory chunk on Linux is very very hard especially on a system with only 256MB and which was running for some time.
 
* LV1 supports 16 contexts simultaneously.
* LV1 has an array of context pointers.
* Each context has an index and a handle. The handle is derived from the index of the context.
 
<pre>
<context handle> = 0x55555555 xor <context index>
</pre>
 
* Thats why first created context will have handle 0x55555555.
 
====Context Object====
 
offset 0x8 - handle (4 bytes)
 
offset 0x48 - IO page size, valid range is 4kB, 64KB and 1MB (8 bytes)
 
====Flags====
 
'''0x2 - tells LV1 to use 64KB pages for GART memory mapping else LV1 uses 1MB pages'''
 
===lv1_gpu_context_iomap===
 
* Internally uses lv1_put_iopte function
* IO page size is the one set during lv1_gpu_context_allocate
* IO address space id is 0x0. IO id is 0x1.
 
===lv1_gpu_context_attribute===
 
====Attribute 0x1====
 
=====FIFO Command Buffer Setup=====
 
<pre>
lv1_gpu_context_attribute(context handle, 0x1, PUT offset, GET offset, 0x0, 0x0)
</pre>
 
====Attribute 0x101====
 
=====Set Flip Mode=====
 
<pre>
lv1_gpu_attribute(0x2, 0x1 /* head */, 0x0, 0x0)
lv1_gpu_context_attribute(context handle, 0x101, 0x1 /* head */, sync mode, 0x0, 0x0)
</pre>
 
====Attribute 0x104====
 
=====Set Display Buffer=====
 
<pre>
lv1_gpu_context_attribute(context handle, 0x104, id, width << 32 | height, pitch << 32 | offset, 0x0)
</pre>
 
====Attribute 0x10a====
 
=====Get Flip Status=====
 
* Reads a value at offset '''0x10C0 + 0x1 * 0x40''' in lpar_reports memory.
 
=====Reset Flip Status=====
 
<pre>
lv1_gpu_context_attribute(context handle, 0x10a, 0x1 /* id */, 0x7fffffff /* mask */, 0x0 /* value */, 0x0)
</pre>
 
* The LV1 call '''lv1_gpu_context_attribute(0x10a)''' accesses LPAR memory returned in '''lpar_reports''' by LV1 call '''lv1_gpu_context_allocate'''.
* Offset into lpar_reports is '''0x10C0 + id * 0x40 = 0x10C0 + 0x1 * 0x40'''.
* Why not access lpar_reports memory directly and use LV1 call instead ???
 
====Attribute 0x10b====
 
* '''This attribute is NOT available on 3.15 LV1 e.g. but on 3.41 it's implemented.'''
 
=====Set Cursor Position=====
 
<pre>
lv1_gpu_context_attribute(context handle, 0x10b, 0x1, 0x3, x, y)
</pre>
 
=====Set Cursor Image Offset=====
 
<pre>
lv1_gpu_context_attribute(context handle, 0x10b, 0x1, 0x2, offset, 0x0)
</pre>
 
====Attribute 0x10c====
 
* '''This attribute is NOT available on 3.15 LV1 e.g. but on 3.41 it's implemented.'''
 
=====Cursor Function 1=====
 
<pre>
lv1_gpu_context_attribute(context handle, 0x10c, 0x1, 0x1, 0x0, 0x0)
</pre>
 
=====Cursor Function 2=====
 
<pre>
lv1_gpu_context_attribute(context handle, 0x10c, 0x1, 0x2, 0x0, 0x0)
</pre>
 
====Attribute 0x10d====
 
* '''This attribute is NOT available on 3.15 LV1 e.g. but on 3.41 it's implemented.'''
 
=====Cursor Function 1=====
 
<pre>
lv1_gpu_context_attribute(context handle, 0x10d, 0x1, 0x1, 0x0, 0x0)
</pre>
 
====Attribute 0x300====
 
=====Set Tile=====
 
=====Set Invalidate Tile=====
 
=====Bind Tile=====
 
=====Unbind Tile=====
 
====Attribute 0x301====
 
=====Set Zcull=====
 
=====Bind Zcull=====
 
=====Unbind Zcull=====
 
====Attribute 0x601====
 
* Copies data from GART memory to VRAM.
* LV1 uses internally the FIFO command buffer passed by ps3fb driver with lv1_gpu_context_iomap.
 
FIFO commands:
<pre>
0x0004C184
0xFEED0001
 
0x0004C198
0x313371C3
 
0x00046300
0x0000000A
 
for ()
{
    for ()
    {
        0x0004630C
        <param>
 
        0x00046304
        <param>
 
        0x0024C2FC
        0x00000001
        0x00000003
        0x00000003
        <param1>
        <param2>
        <param3>
        <param4>
        0x00010000
        0x00010000
 
        0x0001C400
        <param1>
        <param2>
        <param3>
        0x00000000
    }
}
 
0x00040110
0x00000000
</pre>
 
==FIFO Command Buffer==
 
===FIFO Control Registers===
 
* LV1 call '''lv1_gpu_context_allocate''' returns LPAR address of FIFO control registers.
* You have to map it into Linux address space before you can access FIFO control registers.
* Value of PUT and GET registers are NOT expressed in Linux address space but in RSX address space. You have to convert it to RSX address space.
* GET register is read-only and is modified by RSX while it's processing FIFO commands.
 
===Kicking FIFO Command Buffer===
 
* As long as values of GET and PUT FIFO control registers are equal, RSX doesn't process commands from the FIFO command buffer.
* When the value of PUT register is not equal to the value of GET register, RSX starts processing commands in the FIFO command buffer.
* To execute FIFO commands, place them in the FIFO command buffer and change the value of PUT register.
 
===FIFO Setup Programs of emer_init.self===
 
* [[PS3:HvReverseEngineering:emer_init.self:Program 1]]
* [[PS3:HvReverseEngineering:emer_init.self:Program 2]]
* [[PS3:HvReverseEngineering:emer_init.self:Program 3]]
 
===FIFO Commands===
 
[[PS3:HvReverseEngineering:RSXFIFOCommands]]
 
===Example How to Use FIFO Command Buffer===
 
Here is a small Linux kernel module which shows you how to use FIFO command buffer on Linux.
 
* RSX allows to create multiple contexts.
* This kernel module should run without problems with '''ps3fb''' driver already running.
* Make sure you unload '''ps3vram''' driver before running this module because '''ps3vram''' allocates all available RSX memory for itself and because of this, '''lv1_gpu_memory_allocate''' will always fail.
* This kernel module lets the RSX execute a simple program which contains only NOP (No Operation) commands.
 
Download source code: [http://lol.notsoldierx.com/~glevand/ps3/linux/ps3rsx.tar.gz]
 
====Source Code====
 
<pre>
/*
* PS3 RSX
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published
* by the Free Software Foundation; version 2 of the License.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/
 
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/io.h>
#include <linux/delay.h>
 
#include <asm/abs_addr.h>
#include <asm/cell-regs.h>
#include <asm/lv1call.h>
#include <asm/ps3.h>
 
#define RSX_FIFO_CMD_BUF_SIZE (1 * 1024 * 1024)
 
#define RSX_MEM_SIZE (32 * 1024 * 1024)
 
#define RSX_GPU_IOIF (0x0e000000ul)
 
#define RSX_FIFO_CTRL_SIZE (4 * 1024)
 
struct rsx_fifo_ctrl {
u8 res[0x40];
u32 put;
u32 get;
};
 
static u32 *rsx_fifo_cmd_buf;
static u64 rsx_fifo_cmd_buf_lpar;
 
static u64 rsx_mem_handle, rsx_mem_lpar;
static u64 rsx_ctx_handle;
static u64 rsx_fifo_ctrl_lpar;
static u64 rsx_drv_info_lpar;
static u64 rsx_reports_lpar, rsx_reports_size;
 
static struct rsx_fifo_ctrl *rsx_fifo_ctrl;
 
/*
* FIFO program
*/
static u32 rsx_fifo_prg[] = {
0x00000000, /* nop */
0x00000000, /* nop */
0x00000000, /* nop */
};
 
/*
* ps3rsx_init
*/
static int __init ps3rsx_init(void)
{
unsigned long timeout;
int res;
 
/* FIFO command buffer must be allocated in XDR memory */
 
rsx_fifo_cmd_buf = kmalloc(RSX_FIFO_CMD_BUF_SIZE, GFP_KERNEL);
if (!rsx_fifo_cmd_buf) {
printk(KERN_INFO"could not allocate FIFO command buffer\n");
res = -ENOMEM;
goto fail;
}
 
res = lv1_gpu_memory_allocate(RSX_MEM_SIZE, 0, 0, 0, 0,
&rsx_mem_handle, &rsx_mem_lpar);
if (res) {
printk(KERN_INFO"lv1_gpu_memory_allocate failed (%d)\n", res);
res = -ENXIO;
goto fail_free_fifo_cmd_buf_mem;
}
 
res = lv1_gpu_context_allocate(rsx_mem_handle, 0,
&rsx_ctx_handle, &rsx_fifo_ctrl_lpar, &rsx_drv_info_lpar,
&rsx_reports_lpar, &rsx_reports_size);
if (res) {
printk(KERN_INFO"lv1_gpu_context_allocate failed (%d)\n", res);
res = -ENXIO;
goto fail_free_gpu_mem;
}
/* map FIFO command buffer into RSX address space */
 
rsx_fifo_cmd_buf_lpar = ps3_mm_phys_to_lpar(__pa(rsx_fifo_cmd_buf));
 
res = lv1_gpu_context_iomap(rsx_ctx_handle,
RSX_GPU_IOIF, rsx_fifo_cmd_buf_lpar, RSX_FIFO_CMD_BUF_SIZE,
CBE_IOPTE_PP_W | CBE_IOPTE_PP_R | CBE_IOPTE_M);
if (res) {
printk(KERN_INFO"lv1_gpu_context_iomap failed (%d)\n", res);
res = -ENXIO;
goto fail_free_gpu_mem;
}
 
/* map RSX FIFO control registers */
 
rsx_fifo_ctrl = (struct rsx_fifo_ctrl *) ioremap(rsx_fifo_ctrl_lpar, RSX_FIFO_CTRL_SIZE);
if (!rsx_fifo_ctrl) {
printk(KERN_INFO"could not map FIFO control\n");
res = -ENXIO;
goto fail_free_gpu_mem;
}
 
/* PUT and GET offsets are in RSX address space */
 
res = lv1_gpu_context_attribute(rsx_ctx_handle, 0x1,
RSX_GPU_IOIF + 0x0 /* PUT offset */, RSX_GPU_IOIF + 0x0 /* GET offset */,
0x0, 0x0);
if (res) {
printk(KERN_INFO"lv1_gpu_context_attribute(0x1) failed (%d)\n", res);
res = -ENXIO;
goto fail_unmap_fifo_ctrl;
}
 
/* copy FIFO commands to FIFO command buffer */
 
memcpy(rsx_fifo_cmd_buf, rsx_fifo_prg, sizeof(rsx_fifo_prg));
 
printk(KERN_INFO"GET offset (0x%08x) PUT offset (0x%08x)\n", rsx_fifo_ctrl->get, rsx_fifo_ctrl->put);
 
/* kick FIFO */
 
rsx_fifo_ctrl->put = RSX_GPU_IOIF + sizeof(rsx_fifo_prg);
 
/* poll until RSX is done processing FIFO commands */
 
timeout = 100;
 
while (timeout--) {
if (rsx_fifo_ctrl->get == rsx_fifo_ctrl->put)
break;
 
msleep(1);
}
 
printk(KERN_INFO"GET offset (0x%08x) PUT offset (0x%08x)\n", rsx_fifo_ctrl->get, rsx_fifo_ctrl->put);
 
if (rsx_fifo_ctrl->get != rsx_fifo_ctrl->put) {
printk(KERN_INFO"FIFO command buffer timeout\n");
res = -ENXIO;
goto fail_unmap_fifo_ctrl;
}
 
return 0;
 
fail_unmap_fifo_ctrl:
 
iounmap(rsx_fifo_ctrl);
 
 
fail_free_gpu_mem:
 
lv1_gpu_memory_free(rsx_mem_handle);
 
fail_free_fifo_cmd_buf_mem:
 
kfree(rsx_fifo_cmd_buf);
 
fail:
 
return res;
}
 
/*
* ps3rsx_exit
*/
static void __exit ps3rsx_exit(void)
{
iounmap(rsx_fifo_ctrl);
 
lv1_gpu_context_iomap(rsx_ctx_handle, RSX_GPU_IOIF, rsx_fifo_cmd_buf_lpar,
RSX_FIFO_CMD_BUF_SIZE, CBE_IOPTE_M);
 
lv1_gpu_context_free(rsx_ctx_handle);
 
lv1_gpu_memory_free(rsx_mem_handle);
 
kfree(rsx_fifo_cmd_buf);
}
 
module_init(ps3rsx_init);
module_exit(ps3rsx_exit);
 
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("PS3 RSX");
MODULE_AUTHOR("glevand");
</pre>
 
====Test====
 
<pre>
# insmod ./ps3rsx.ko
# dmesg
 
GET offset (0x0e000000) PUT offset (0x0e000000)  # GET and PUT offsets before kicking FIFO
GET offset (0x0e00000c) PUT offset (0x0e00000c)  # GET and PUT offsets after kicking FIFO
</pre>
 
As you see, RSX processed our FIFO commands :)
 
==Linux Driver==
 
* '''DRI/DRM is the ONLY way to go !!! No hacks like kernel modules with tons of IOCTLs !!!'''
* First implement 2D acceleration and then add 3D support
* The driver consists of 2 parts: '''DDX driver''' for X11 (user space) and '''DRM driver''' for Linux Kernel (kernel space)
* First implement DRM driver and test it from user space without DDX and libdrm by talking to it directly
 
===DDX Driver===
 
* Use '''libdrm'''
* Use '''EXA API''' for 2D acceleration on X11 (or maybe use '''XAA API''')
* Use '''Kernel Mode Setting'''
 
===DRM Driver===
 
* Extend '''nouveau''' driver or create a new one ???
* '''Decision: create new DRM driver in order to learn how DRM framework in Linux kernel works and because we have to use LV1 calls to access RSX (and because it's a lot more fun to do it on my own). But use nouveau as an example for DRM driver. Maybe i should better use radeon DRM driver as an example beacuse it seems to be better designed and implemnted !!!'''
* The driver is very low level and allows direct access to almost all RSX funtions, e.g. FIFO buffer, to achieve maximum performance.
* All data buffers, e.g. vertices and textures, are managed by DRM framework (Linux kernel). To avoid copying from user to kernel space, the buffers will be mmaped into user space.
* Provides an interface to manage graphic objects in VRAM.
* Use '''TTM''' or '''GEM''' ??? TTM is used by radeon and nouvea drivers, so i guess we could use it too. GEM is for Intel chips.
* Extend '''libdrm''' library to support new DRM driver.
* Fences can be implemented with '''RSX REF Control Register'''
 
====Memory Management====
 
* Size of all memory objects must be multiple of the page size (4096 bytes) even if a smaller size is requested by user
* Nouveau driver uses IOCTL '''DRM_NOUVEAU_GEM_NEW''' to allocate memory objects in VRAM or GART. The IOCTL returns the handle of the newly allocated memory object.
* An example from Mesa how memory objects are used: [http://fxr.watson.org/fxr/source/external/bsd/drm/dist/libdrm/nouveau/nouveau_bo.c?v=NETBSD;im=10] [http://www.opensource.apple.com/source/X11libs/X11libs-60/mesa/Mesa-7.8.2/src/mesa/drivers/dri/nouveau/nouveau_bufferobj.c]
 
====Video RAM====
 
* VRAM is allocated once during context creating and cannot be changed during the whole life of the context.
* '''lv1_gpu_memory_allocate''' returns LPAR address of allocated VRAM which can be mapped into kernel address space.
* '''VRAM starts at offset 0x0 in GPU address space.'''
* VRAM heap management is necessary, use e.g. TTM (ttm_bo_init_mm).
* This memory type is used e.g. for vertices or textures.
* It should be mappable from user space in order to allow user to put data there.
* GameOS calls it '''Local Memory'''.
* VRAM can be mapped into kernel-space with '''ioremap'''.
* To map VRAM into user-space map it first into kernel-space with '''ioremap''' and then use '''remap_pfn_range''' to map into user-space.
* Use '''VM_IO''' flag for this kind of memory when mapping it into user-space.
* Mapping examples: [http://www.scs.ch/~frey/linux/memorymap.html] [http://www.cs.fsu.edu/~baker/devices/projects/antgeo/avnet_june19/pci_avnet.c]
 
====GART Memory====
 
* GART memory region is a memory region in System Memory but accessible by RSX through GART [http://dri.freedesktop.org/wiki/GART].
* GameOS calls it '''Main Memory'''.
* '''Problem: lv1_gpu_context_iomap supports ONLY 1MB and 64kB pages'''
* Size of system memory objects mapped into GPU address space should be either multiple of 1MB which means wasting lots of RAM and we don't have enough of it anyways. This solution is NOT suitable.
* Or place several GART memory objects into 1 MB page and map it. That would mean we have to use memory manager for each 1MB page.
* That means, we have to allocate 1MB page even if user requested a smaller memory region. Then initialize a heap manager for this 1MB page and return ONLY requested size. The following requests for GART memory regions can be satisfied from the previously allocated 1MB pages which still have enough free memory.
* FIFO command buffer is an example of a GART memory object which has to be mapped into GPU address space with lv1_gpu_context_iomap before it can be used by RSX.
* User allocates FIFO command buffer in GART address space, maps it into user space, write commands into it and then pushes it to DRM driver which maps it into RSX address space and CALLs it.
* '''TTM: TTM_PL_FLAG_TT for GART memory'''
* '''GameOS applications using GCM library map GART memory beginning at offset 0x10000000 or 0x20000000, just after where the whole VRAM is mapped.'''
* '''Don't use kmalloc for this type of memory. Use __get_free_pages and mark pages with flag VM_RESERVED before exporting it to user-space else they can be swapped out.'''
* TTM uses '''struct ttm_backend_func''' to call driver specific GART mapping functions. '''nouveau_sgdma.c''' handles GART memory mapping.
 
====CPU Memory====
 
* This type of memory cannot be accessed by RSX at all.
* Because this type of memory is not mapped into RSX address space through GART we don't need to allocate it in 1MB multiples.
* What do we need it for ???
 
====Mapping Memory Objects into Kernel-Space====
 
* Nouveau driver uses '''ttm_bo_kmap''' to map memory objects into kernel-space (see '''ttm_bo_util.c''').
* Nouveau driver uses '''ttm_bo_ioremap''' to map IO memory into kernel-space, e.g. VRAM or GPU registers (see '''ttm_bo_util.c''') which uses '''ioremp_wc''' or '''ioremp_nocache'''.
* TTM uses page-wise allocation for buffers. The buffers are contiguous ONLY in a single page. That has a huge advantage over allocating 1MB contiguous memory blocks in kernel space. It's far easier to allocate a single page in Linux kernel than 1MB memory chunk, especially on PS3 arch which has only 256MB.
* '''Problem: lv1_gpu_context_iomap allows ONLY 1MB pages. Use lv1_put_iopte ???'''. See [http://lwn.net/Articles/304188/], [http://lxr.free-electrons.com/source/arch/powerpc/platforms/ps3/mm.c?a=sh#L562],  [http://wiki.ps2dev.org/ps3:hypervisor:lv1_put_iopte ] and [http://wiki.ps2dev.org/ps3:hypervisor:lv1_gpu_context_iomap].
* Yes, we can use '''lv1_put_iopte''' instead of '''lv1_gpu_context_iomap'''. That would solve the problem with 1MB pages on Linux. Both LV1 calls use the same internal LV1 function to map memory pages.
* '''lv1_gpu_context_iomap uses IOAS_ID 0 and IOID 1.'''
* TTM allows to map a buffer multiple times. Mapping information is stored in '''struct ttm_bo_kmap_obj'''.
* '''To make single allocated pages look contiguous to kernel-space, TTM uses vmap'''.
* '''It is possible to use 64KB pages for GART mapping without patching LV1. To enable 4KB pages support we have to patch LV1.'''
* Tested with 64kB IO page size. It works fine.
 
====Mapping Memory Objects into User-Space====
 
* User-space programs should be able to allocate memory objects in VRAM or GART and map it with '''mmap syscall'''.
* See '''nouveau_ttm.c:nouveau_ttm_mmap'''.
* Mapping memory objects into user-space avoids copying of data between user/kernel spaces.
* Problem: how to identify memory objects ???
* '''libdrm''' uses handles which are returned by DRM kernel driver when a new memory object is created. The handle is passed to mmap syscall as parameter '''offset'''. DRM driver looks up the handle and identifies the appropriate memory object which is mapped into user-space then.
* Nouveau driver uses TTM framework to map memory objects into user-space. TTM doesn't map all pages owned by the memory object at once but installs '''VM operation fault''' which maps single pages on demand. It makes sense because user application rarely accesses all pages of the mapped memory object at once.
* To map memory objects located in VRAM we have to map it into kernel space first with '''ioremap'''.
 
====FIFO Command Buffer====
 
* Every context has its own one main FIFO command buffer which is NOT accessible directly by user space.
* User-space applications can allocate additional FIFO command buffers in GART memory space, map it into user space, store commands there and submit to DRM driver.
* Nouveau driver uses IOCTL '''NOUVEAU_GEM_PUSHBUF''' to execute FIFO command buffers. See '''nouveau_gem.c:nouveau_gem_ioctl_pushbuf'''.
* By user applications submitted FIFO command buffers are mapped by DRM driver into RSX address space first and then executed with CALL command.
* '''Problem: All references to graphics objects contained in FIFO command buffers must be expressed in RSX address space. How does user space know the right offsets of the referenced objects ???'''
* To solve the above problem, Nouveau driver uses relocations which are submitted to DRM driver together with FIFO command buffers. The DRM driver applies the specified relocations before executing the FIFO command buffer. See '''nouveau_gem.c:nouveau_gem_pushbuf_reloc_apply'''.
* Relocations contain memory object handles which they apply to. The DRM driver looks up the memory object by its handle and the memory objects contain GPU address space offsets.
 
=====Example=====
<pre>
      ---------------------------------------------------------------
      |                                                              |
      |                                                              |
    \|/    Main FIFO command buffer (one per allocated context)    |
------------------------------        ------------------------------------
|          |        |                    |          |          |          |
|    ...    |  CALL  |        ...        |  CALL  |  ...    |  JMP    |
|          |        |                    |          |          |          |
------------------------------        ------------------------------------
                |      /|\                    |        /|\
    -------------|        |                    |          |
    |              ------|            --------|          |
  \|/              |                  |              ---|
-----------------------                |              |
|      |      |      |              |              |
|  ...  |  ...  |  RET  |              |              |
|      |      |      |              |              |
-----------------------                |              |
  FIFO command buffer 1                |              |
  (allocated by user space)            \|/              |
                                    -----------------------
                                    |      |      |      |
                                    |  ...  |  ...  |  RET  |
                                    |      |      |      |
                                    -----------------------
                                      FIFO command buffer 2
                                    (allocated by user space)
</pre>
 
====Fences====
 
* Nouveau driver implements DRM fences with REF control register. See '''nouveau_fence.c:nouveau_fence_new'''.
* Newer Nvidia chips support semaphores. Nouveau driver uses semaphores for fences if they are supported.
* libgcm functions '''SetWriteCommandLabel''' and '''SetWaitLabel''' use semaphores.
* '''SetWriteCommandLabel''' releases semaphore and '''SetWaitLabel''' acquires semaphore.
* Semaphores are placed in VRAM. Nouveau driver creates a small VRAM heap for semaphores. See '''nouveau_fence.c:nouveau_fence_channel_init'''.
 
====IOCTLs====
 
=====Context Create=====
 
* Creates new RSX context
* Allocates VRAM and memory for FIFO buffer
* Needed VRAM size and FIFO buffer size must be known during context creation
 
=====Context Destroy=====
 
* Destroys previously allocated context
 
=====Context Attribute=====
 
* Changes context attributes
 
=====Graphic Object Creatre=====
 
* Create a graphic object either in VRAM or in XDR
* Used to create FIFO command buffers too (only in XDR of course because RSX supoorts FIFO command buffer in XDR only)
 
=====Graphic Object Destroy=====
 
* Frees previously created graphic object
 
=====FIFO Execute=====
 
* Allows user space applications to execute FIFO commands.
* To avoid copying of buffers allocated by user space to main FIFO command buffer use CALL and RET RSX FIFO commands to execute FIFO commands in buffers allocated by user space.
* Several FIFO command buffers can be submitted at once.
 
=====Framebuffer=====
 
* Kernel DRM driver has to implement a frame buffer driver too
* Nouvea driver allocates frame buffer in video RAM and maps it into kernel address space (see '''nouveau_fbcon.c:nouveau_fbcon_create'''). Current ps3fb Linux driver doesn't allocate frame buffer in vide RAM but in system RAM.
* Direct access to video RAM from kernel is very very slow but some of frame buffer functions in Nouvea driver are hardware accelerated. We could do it the same way on Linux and get a hardware accelerated frame buffer this way. Not sure why ps3fb authors didn't add hardware acceleration to frame buffer. The reason why it was not implemnted in ps3fb is because LV1 doesn't create 2D graphic objects needed for 2D hardware acceleration.
* '''lv1_gpu_allocate_memory''' returns LPAR address of video RAM allocated for the RSX context.
* Unfortunately '''lv1_gpu_context_allocate''' doesn't initialize 2D ROP objects but we could use 3D operations to implement 2D ROPs.
 
===libdrm===
 
* Add support for RSX DRM to '''libdrm'''
 
===Test Kernel Module and Program===
 
* I uploaded here a test kernel module and a test user application: [http://www.gitbrew.org/~glevand/ps3/linux/ps3rsx_kernel.tar.gz] and [http://www.gitbrew.org/~glevand/ps3/linux/ps3rsx_user.tar.gz]
* I used a similar technique for mapping GPU resources into user-space like Linux kernel DRM drivers do it, e.g. Nouveau. But of course everything is very simplified in comparison with Nouveau driver. All GPU resources are mapped to user-space with mmap and there is no data copying between user and kernel space, for performance reasons. Mapping GPU resources into user-space like this is more flexible than IOCTLs.
* '''The purpose of the kernel module and the user application is to test how RSX works, to test FIFO commands and other stuff i reversed from Lv2. It's NOT for end users.'''
* Before loading the kernel module make sure ps3vram kernel module is NOT loaded.
* I used 64kB IO pages for GPU context. 4kB IO page size would be definitely a lot better for that we have to patch LV1. I will add this patch to my ps3mfw tasks for LV1.
* Just load the kernel module and then run the user application.
* The user application maps all context resources and executes some simple FIFO commands, like JMP or SET REF.
* I will add more examples later.
* By default, the kernel module allocates 8MB VRAM, 64kB FIFO and 1MB GART memory. You can change it by using kernel module parameters.
* Take a look at how i made non-contiguous allocated GART memory look contiguous to GPU, kernel-space and user-space.
* The kernel module needs some IOCTLs, e.g. for setting display buffers or flip status, because it can be done ONLY with LV1 calls. I will add it later.
 
===Links===
 
* http://yangman.ca/blog/2009/10/linux-graphics-driver-stack-explained
* http://www.bitwiz.org.uk/s/how-dri-and-drm-work.html
* http://dri.sourceforge.net/doc/drm_low_level.html
* http://www.botchco.com/agd5f/?p=50
* http://webcvs.freedesktop.org/xorg/xc/programs/Xserver/hw/xfree86/doc/DESIGN?view=co
* http://www.x.org/wiki/ModularDevelopersGuide
* http://www.xfree86.org/current/DESIGN20.html
* http://nouveau.freedesktop.org/wiki/GraphicStackOverview
* http://cgit.freedesktop.org/nouveau/xf86-video-nouveau/tree/
* http://cgit.freedesktop.org/xorg/xserver/tree/hw/xfree86/doc/exa-driver.txt
* http://cgit.freedesktop.org/xorg/xserver/tree/hw/xfree86/xaa/XAA.HOWTO
* http://cgit.freedesktop.org/nouveau/linux-2.6/tree/drivers/gpu/drm
* http://kernel.org/doc/htmldocs/drm/drmInternals.html
* http://paginas.fe.up.pt/~mei04010/dri-architecture.pdf
* http://www.ecsl.cs.sunysb.edu/tr/TR222.pdf
* http://www.freesoftwaremagazine.com/columns/the_new_xorg_features
* http://www.freesoftwaremagazine.com/columns/xorgs_x_window_innovation_its_not_all_about_graphics#
* http://www.virtuousgeek.org/exa-driver.txt
* http://www.x.org/wiki/ttm
* http://nouveau.freedesktop.org/wiki/NvObjectTypes
* TTM: [http://lwn.net/Articles/257417/] [http://nouveau.freedesktop.org/wiki/TTMMemoryManager?action=AttachFile&do=get&target=mm.pdf]
* GEM: [http://lwn.net/Articles/283798/]
* TTM vs GEM: [http://lwn.net/Articles/283793/]
* OMAP DRM Driver: https://github.com/robclark/kernel-omap4/tree/omap_gpu-android/drivers/gpu/drm/omap
 
=BD Drive=
Crossreference: [http://wiki.gitbrew.org/wikibrew/PS3:HvReverseEngineering#BD_Drive gitbrew.org::HV#BD Drive] <br />
 
 
==Profile==
 
* BD profile can be read with '''GET PROFILE''' device command or SCSI command '''GET CONFIGURATION'''
 
===Profile Table===
 
{| class="wikitable"
|-
! Profile !! Description
|-
| 0x0 || No Current Profile
|-
| 0x2 || Removable Disk
|-
| 0x8 || CD-ROM
|-
| 0x9 || CD-R
|-
| 0xa || CD-RW
|-
| 0x10 || DVD-ROM
|-
| 0x11 || DVD-R Sequential recording
|-
| 0x12 || DVD-RAM
|-
| 0x13 || DVD-RW Restricted Overwrite
|-
| 0x14 || DVD-RW Sequential recording
|-
| 0x1a || DVD+RW
|-
| 0x1b || DVD+R
|-
| 0x40 || BD-ROM
|-
| 0x41 || BD-R Sequential Recording(TBD)
|-
| 0x42 || BD-R Random Recording(TBD)
|-
| 0x43 || BD-RE
|-
| 0x50 || PS1 CD-ROM
|-
| 0x60 || PS2 CD-ROM
|-
| 0x61 || PS2 DVD-ROM
|-
| 0x70 || PS3 DVD-ROM
|-
| 0x71 || PS3 BD-ROM
|-
| 0x10000 || CD-DA
|-
| 0x20000 || SACD
|-
| 0x100000 || Dual Layer (Parallel)
|-
| 0x200000 || Dual Layer (else Parallel)
|}
 
==Buffer==
 
* BD drive has several buffers associated with internal flash
* Buffer can be read and written with SCSI commands '''READ/WRITE BUFFER'''
* Writing buffer is enabled with SCSI command '''MODE SELECT 10''' first
 
===Buffer Table===
 
{| class="wikitable"
|-
! ID !! Size !! Description
|-
| 0x0 || 0x8000 || Used to transfer firmware to BD drive
|-
| 0x1 || 0x800 || Serial Flash
|-
| 0x2 || 0x60 || P-Block
|-
| 0x3 || 0x670 || S-Block
|-
| 0x4 || 0x8000 || Host Revocation List (HRL) Empty
|-
| 0x5 || 0x8000 || Host Revocation List (HRL) Current
|-
| 0x6 || 0x670 || S-Block
|-
| 0x7 || 0x8000 || Host Revocation List (HRL)
|}
 
===HRL Buffer===
 
* Size is 32KB just like AACS specifications prescribes (See AACS Common Specification 3.2.5.2 Host Revocation List Record)
* '''We could replace HRL with an older one in BD drive flash and restore revoked Host Certificates !!!'''
 
==Device Commands==
 
===Get Profile (0x11)===
 
* BD profile can be read with LV1 call '''lv1_send_storage_device_command''' and command '''0x11'''
* LV1 sends SCSI command '''GET CONFIGURATION''' to BD drive with '''requested type 0x0''', '''starting feature number 0x0''' and '''allocation length 0x8'''
* See SCSI command '''GET CONFIGURATION'''
 
===Auto Request Sense Mode On/Off (0x30)===
 
* LV1 expects a 4 byte value: 0x0 - On, 0x1 - Off
* can be get/set via GameOS sc0x25C/604: sys_storage_send_device_command(fd of bdvd,0x30,value,4,0,0 )
 
==SCSI Commands==
 
===Get Configuration===
 
Getting the profile of a BD movie disc:
<pre>
# sg_raw -r 0x8 /dev/sr0 46 02 00 00 00 00 00 00 08 00
SCSI Status: Good
 
Sense Information:
sense buffer empty
 
Received 8 bytes of data:
00    00 00 00 38 00 00 00 40                            ...8...@ 
 
# 0x40 means BD-ROM
</pre>
 
Getting the profile of a PS3 game disc:
<pre>
# sg_raw -r 0x8 /dev/sr0 46 02 00 00 00 00 00 00 08 00
SCSI Status: Good
 
Sense Information:
sense buffer empty
 
Received 8 bytes of data:
00    00 00 00 38 00 00 ff 71                            ...8...q
# 0x71 means PS3 BD-ROM
</pre>
 
===Get SS Key===
 
* By SCSI standard undocumented parameters are used
* '''SCSI Report Key''' command with '''key format 0x3''' and '''key class 0xe0'''
* 8 bytes are returned by BD drive
* Used by VSH
 
Test with PS3 game disc:
<pre>
# sg_raw -r 8 /dev/sr0 a4 00 00 00 00 00 00 e0 00 08 03 00
SCSI Status: Good
 
Sense Information:
sense buffer empty
 
Received 8 bytes of data:
  00    00 06 00 00 00 00 00 04                            ........         
</pre>
 
===Eject Media===
 
<pre>
sg_raw /dev/sr0 0x1b 00 00 00 02 00
</pre>
 
===Load Media===
 
<pre>
sg_raw /dev/sr0 0x1b 00 00 00 03 00
</pre>
 
===Mode Select 10===
 
====Enable Buffer Write====
 
* Uses '''PF 0x1''', '''SP 0x0''' and '''parameter list length 0x10'''
* Uses the following parameter list: '''0x00 0x0e 0x00 0x00 0x00 0x00 0x00 0x00 0x2d 0x6 <buffer id> 0x00 0x00 0x00 0x00 0x00'''
* '''Enables writing to BD drive flash, e.g. to HRL buffer !!!'''
 
Test with sg3-utils which enables write to HRL buffer:
<pre>
sg_raw /dev/sr0 55 10 00 00 00 00 00 00 10 00 00 0e 00 00 00 00 00 00 2d 06 04 00 00 00 00 00
</pre>
 
===Write Buffer===
 
* Used e.g. by Update Manager to send BD firmware to BD drive
* '''Mode 0x5 (Download microcode and save)''' is used e.g. to write HRL to BD drive flash
* '''Mode 0x7 (Download microcode with offsets and save)''' is used e.g. to write BD firmware to BD drive flash
 
==AACS==
 
===AACS SPU Module===
 
* BD player on GameOS uses '''AacsModule.spu.isoself''' (/dev_flash/bdplayer) to perform AACS authentication
* Tested on OtherOS++ 3.55
* Host certificate, host private key and AACS LA public key are stored encrypted with AES-256-CTR in the SPU module and are decrypted when the SPU module is loaded or when it's accessed first. The AES-256-CTR key and IV are in the SPU module too.
 
====Communication====
 
* BD player reads '''EID3''' with '''Indi Info Manager 0x17001/0x17002''' services and passes it to SPU module
* '''EID3 is NEVER used in the SPU module although BD player passes it to the SPU module'''
* Data is exchanged with the SPU module through '''SPU In Mbox''', '''SPU Out Intr Mbox''' and a data buffer in XDR memory of size '''0x2000''' bytes.
 
====Commands====
 
* The SPU module supports max '''0x78''' commands but not all are implemented
* After a command is finished by the SPU module, it sends the status of the command to PPU through '''SPU Out Intr Mbox'''. Value 0 means success.
 
=====Read 4 Bytes from XDR Buffer (0x2)=====
 
* It just reads 4 bytes of data from the XDR buffer passed to the SPU module.
 
=====Set KCD (0x1e)=====
 
* Sends KCD (Key Conversion Data) to the SPU module.
* KCD is encrypted with the Bus Key which was established previously by AACS authentication.
 
=====Init AES_H (0x34)=====
 
* Initializes AES_H hashing function.
 
=====Calculate AES_H 1 (0x35)=====
 
* Calculates AES_H hash of the data stored in XDR buffer.
 
=====Calculate AES_H 2 (0x36)=====
 
* Calculates AES_H hash of the data stored in XDR buffer.
 
=====Generate Host Nonce (0x3c)=====
 
* Generates a nonce which is returned in command '''0x3d'''
 
=====Get Host Nonce and Certificate (0x3d)=====
 
* The data returned by this command is of size '''0x14 (Nonce) + 0x5c (Host Certificate)'''
* The data returned by this command is sent by BD player with SCSI command '''SEND KEY''' to BD drive during AACS authentication
* '''Host Certificate is easy to get from the SPU module, e.g. with aacs_module on OtherOS++'''
* The data contains a nonce, host public key and host certificate signature.
 
=====Set Drive Nonce and Certificate (0x3e)=====
 
* Stores BD drive nonce and certificate in local memory of SPU
 
=====Verify Drive Certificate (0x3f)=====
 
=====Set Drive Key (0x40)=====
 
=====Sign Host Key (0x44)=====
 
=====Get Host Key (0x45)=====
 
=====Calculate Bus Key (0x46)=====
 
=====Set Volume ID (0x47)=====
 
* Sends volume id and its MAC to the SPU module
 
=====Calculate Volume ID MAC (0x48)=====
 
* Calculates MAC of the passed volume id
 
=====Verify Volume ID MAC (0x49)=====
 
* Verifies MAC of the passed volume id
 
=====Set PMSN (0x4a)=====
 
* Sends PMSN and its MAC to the SPU module
 
=====Calculate PMSN MAC (0x4b)=====
 
* Calculates MAC of the passed PMSN
 
=====Verify PMSN (0x4c)=====
 
* Verifies MAC of the passed PMSN
 
=====Set Media ID (0x4d)=====
 
* Sends media id and its MAC to the SPU module
 
=====Calculate Media ID MAC (0x4e)=====
 
* Calculates MAC of the passed media id
 
=====Verify Media ID MAC (0x4f)=====
 
* Verifies MAC of the passed media id
 
=====Unknown (0x54)=====
 
=====Verify Host/Drive Revocation (0x55)=====
 
* BD player stores HRL/DRL list entries in XDR buffer and passes it to the SPU module for verification


===Eject Media===
=====Terminate Session (0xfefefeff)=====


<pre>
sg_raw /dev/sr0 0x1b 00 00 00 02 00
</pre>
===Load Media===
<pre>
sg_raw /dev/sr0 0x1b 00 00 00 03 00
</pre>
===Mode Select 10===
====Enable Buffer Write====
* Uses '''PF 0x1''', '''SP 0x0''' and '''parameter list length 0x10'''
* Uses the following parameter list: '''0x00 0x0e 0x00 0x00 0x00 0x00 0x00 0x00 0x2d 0x6 <buffer id> 0x00 0x00 0x00 0x00 0x00'''
* '''Enables writing to BD drive flash, e.g. to HRL buffer !!!'''
Test with sg3-utils which enables write to HRL buffer:
<pre>
sg_raw /dev/sr0 55 10 00 00 00 00 00 00 10 00 00 0e 00 00 00 00 00 00 2d 06 04 00 00 00 00 00
</pre>
===Write Buffer===
* Used e.g. by Update Manager to send BD firmware to BD drive
* '''Mode 0x5 (Download microcode and save)''' is used e.g. to write HRL to BD drive flash
* '''Mode 0x7 (Download microcode with offsets and save)''' is used e.g. to write BD firmware to BD drive flash
==AACS==
===AACS SPU Module===
* BD player on GameOS uses '''AacsModule.spu.isoself''' (/dev_flash/bdplayer) to perform AACS authentication
* Tested on OtherOS++ 3.55
* Host certificate, host private key and AACS LA public key are stored encrypted with AES-256-CTR in the SPU module and are decrypted when the SPU module is loaded or when it's accessed first. The AES-256-CTR key and IV are in the SPU module too.
* 4.76 uses new Host certificate
====Communication====
* BD player reads '''EID3''' with '''Indi Info Manager 0x17001/0x17002''' services and passes it to SPU module
* '''EID3 is NEVER used in the SPU module although BD player passes it to the SPU module'''
* Data is exchanged with the SPU module through '''SPU In Mbox''', '''SPU Out Intr Mbox''' and a data buffer in XDR memory of size '''0x2000''' bytes.
====Commands====
* The SPU module supports max '''0x78''' (til 4.75, 0x57 since 4.76) commands but not all are implemented
* After a command is finished by the SPU module, it sends the status of the command to PPU through '''SPU Out Intr Mbox'''. Value 0 means success.
{| class="wikitable sortable"
|+ style="caption-side:bottom; color:#e76700;"|''No full list!''
! colspan="2" style="background-color:#FFEBAD;"| Command in FW !! rowspan="2" style="background-color:#FFEBAD;"| Name !! rowspan="2" style="background-color:#FFEBAD;"| Parameters !! rowspan="2" style="background-color:#FFEBAD;"| Info
|-
! style="background-color:#FFEBAD;"| -4.75 !! style="background-color:#FFEBAD;"| 4.76+
|-
| 0x02|| 0x34 || Read 4 Bytes from XDR Buffer || ||
* It just reads 4 bytes of data from the XDR buffer passed to the SPU module.
|-
| 0x1C|| 0x48 || Set KCD || ||
* Sends KCD (Key Conversion Data) to the SPU module.
* KCD is encrypted with the Bus Key which was established previously by AACS authentication.
|-
| 0x34|| 0x23 || Init AES_H || ||
* Initializes AES_H hashing function.
|-
| 0x35|| 0x22 || Calculate AES_H 1 || ||
* Calculates AES_H hash of the data stored in XDR buffer.
|-
| || 0x21 ||  || 2x 4 Bytes ||
Signed CSS CheckCRL
|-
| || 0x56||  || ||
Get Random Seed
|-
| || 0x32||  || ||
Unknown
|-
| 0x36|| 0x24 || Calculate AES_H 2 || ||
* Calculates AES_H hash of the data stored in XDR buffer.
|-
| 0x3C|| 0x12 || Generate Host Nonce || ||
* Generates a nonce which is returned in command '''0x3D''' / '''0x0C'''
|-
| 0x3D|| 0x0C || Get Host Nonce and Certificate || ||
* The data returned by this command is of size '''0x14 (Nonce) + 0x5c (Host Certificate)'''
* The data returned by this command is sent by BD player with SCSI command '''SEND KEY''' to BD drive during AACS authentication
* '''Host Certificate is easy to get from the SPU module, e.g. with aacs_module on OtherOS++'''
* The data contains a nonce, host public key and host certificate signature.
|-
| 0x3E|| 0x0D|| Set Drive Nonce and Certificate || ||
* Stores BD drive nonce and certificate in local memory of SPU
|-
| 0x3F|| 0x0E|| Verify Drive Certificate || ||
|-
| 0x40|| 0x0A|| Set Drive Key || ||
|-
| 0x44|| 0x10 || Sign Host Key || ||
|-
| 0x45|| 0x0B || Get Host Key || ||
|-
| 0x46|| 0x14 || Calculate Bus Key || ||
|-
| 0x47|| 0x1C || Set Volume ID || ||
* Sends volume id and its MAC to the SPU module
|-
| 0x48|| 0x1D || Calculate Volume ID MAC || ||
* Calculates MAC of the passed volume id
|-
| 0x49|| 0x15 || Verify Volume ID MAC || ||
* Verifies MAC of the passed volume id
|-
| 0x4A|| 0x1A || Set PMSN || ||
* Sends PMSN and its MAC to the SPU module
|-
| 0x4B|| 0x1B || Calculate PMSN MAC || ||
* Calculates MAC of the passed PMSN
|-
| 0x4C|| 0x16 || Verify PMSN || ||
* Sends media id and its MAC to the SPU module
|-
| 0x4D|| 0x18 || Set Media ID || ||
* Sends media id and its MAC to the SPU module
|-
| 0x4E|| 0x19 || Calculate Media ID MAC || ||
* Calculates MAC of the passed media id
|-
| 0x4F|| 0x17 || Verify Media ID MAC || ||
* Verifies MAC of the passed media id
|-
| 0x55|| 0x1F || Verify Host/Drive Revocation || ||
* BD player stores HRL/DRL list entries in XDR buffer and passes it to the SPU module for verification
|-
| 0x72|| 0x25 ||  || || OCRL related, Content Revocation List
|-
| 0x74|| 0x26 ||  || || OCRT related
|-
| 0x75|| 0x27 ||  || || OSIG related
|-
| 0xFEFEFEFF|| 0xFEFEFEFF|| Terminate Session || ||
* AACS SPU module runs and processes commands as long as you need
* AACS SPU module runs and processes commands as long as you need
* After a command is complete, the SPU module waits for the next command
* After a command is complete, the SPU module waits for the next command
* This command terminates the current session and stops SPU module
* This command terminates the current session and stops SPU module
|-
|}


===Drive Revocation List (DRL)===
===Drive Revocation List (DRL)===
Line 10,547: Line 12,038:


====P-Block====
====P-Block====
Decrypted P-Block (and EID4) contains region settings (see below)
In decrypted P-Block(bytes 0x30 and 0x32) and in EID4(first byte) these bytes match [[Product Code]]:
{| class="wikitable sortable" style="font-size:small; border:2px ridge #999999;"
|-
! Hex !! bitflag !! [[Product Code]] !! Console Type !! Remarks
|-
| 0xFF || '''11111111''' || {{TID80}} || No BD playback on that [[Product Code]]
|-
| 0xFF || '''11111111''' || {{TID81}} || No BD playback on that [[Product Code]]
|-
| 0xFF || '''11111111''' || {{TID82}} || No BD playback on that [[Product Code]]
|-
| 0x01 || 0000000'''1''' || {{TID83}} || bit 0 (Region 0: Japan?)
|-
| 0x02 || 000000'''1'''0 || {{TID84}} || bit 1 (Region 1: USA & Canada, Bermuda, and US Territories)
|-
| 0x04 || 00000'''1'''00 || {{TID85}} || bit 2 (Region 2: Europe (with the exceptions of Russia, Ukraine, Belarus), South Africa, Swaziland, Middle East, Egypt, Lesotho, and Greenland)
|-
| 0x10 || 000'''1'''0000 || {{TID86}} || bit 4 (Region 3: Southeastern Asia)
|-
| 0x04 || 00000'''1'''00 || {{TID87}} || bit 2 (Region 2: Europe (with the exceptions of Russia, Ukraine, Belarus), South Africa, Swaziland, Middle East, Egypt, Lesotho, and Greenland)
|-
| 0x08 || 0000'''1'''000 || {{TID88}} || bit 3 (Region 4: Latin America and Australia)
|-
| 0x08 || 0000'''1'''000 || {{TID89}} || bit 3 (Region 4: Latin America and Australia)
|-
| 0x20 || 00'''1'''00000 || {{TID8A}} || bit 5 (Region 5: Russia, Asia (non-southeast), and Africa)
|-
| 0x10 || 000'''1'''0000 || {{TID8B}} || bit 4 (Region 3: Southeastern Asia)
|-
| 0x20 || 00'''1'''00000 || {{TID8C}} || bit 5 (Region 5: Russia, Asia (non-southeast), and Africa)
|-
| 0x40 || 0'''1'''000000 || {{TID8D}} || bit 6? (Region 6: China)
|-
| 0x10 || 000'''1'''0000 || {{TID8E}} || bit 4  (Region 3: Southeastern Asia)
|-
| 0x08 || 0000'''1'''000 || {{TID8F}} || bit 3 (Region 4: Latin America and Australia)
|-
| 0xFF || '''11111111''' || {{TIDA0}} || No BD playback on that [[Product Code]]
|-
|}


=====Creating=====
=====Creating=====
Line 10,750: Line 12,198:
lv1_destruct_logical_spe (0x00000000)
lv1_destruct_logical_spe (0x00000000)
</pre>
</pre>
{{Reverse engineering}}<noinclude>[[Category:Main]]</noinclude>
Please note that all contributions to PS3 Developer wiki are considered to be released under the GNU Free Documentation License 1.2 (see PS3 Developer wiki:Copyrights for details). If you do not want your writing to be edited mercilessly and redistributed at will, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource. Do not submit copyrighted work without permission!

To protect the wiki against automated edit spam, we kindly ask you to solve the following hCaptcha:

Cancel Editing help (opens in new window)